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I Anomaly Detection PEII‘NP_[:

Anomaly Detection is a binary classification identifying unusual or unexpected patterns in a dataset, which deviate
significantly from the majority of the data. The goal of anomaly detection is to identify such anomalies, which could
represent errors, fraud, or other types of unusual events, and flag them for further investigation.

1. hard to gain a large amount of defective images.

2. various defect types.




I Unsupervised Algorithms PEII‘NP_E BRI e

® Reconstruction-based Algorithms: AE, VAE, GAN, etc.
® Normalizing Flow-based Algorithms: CFlow, FastFlow, etc.
® Representation-based Algorithms: SPADE, PatchCore, etc.

® Data augmentation-based Algorithms: DRAEM, CutPaste, etc.



BIURRISHE T EHFAE
PAttern Recognition ar E Computi

no NEuwral Computing

I Language Models PEII‘NP_[:

® Causal Language Model (CLM) ® Masked Language Model (MLM)
N K

1
Lalm(X) = Z logp(wn|$1, coy T—1; 9): Lmlm(XHlX—H) = E Z logp(a:wk |X—H§ 9)
k=1

CE =-1l0g0.8 010g0.01 ... n
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Motivation:

® |Large Vision-Language Models (LVLMs) have strong abilities of understanding images, but they lack specific domain
knowledge and have a weaker understanding of localized details within objects.

® Most existing IAD methods only provide anomaly scores and necessitate the manual setting of thresholds to
distinguish between normal and abnormal samples.

Methods Few-shot learning  Anomaly score  Anomaly localization  Anomaly judgement  Multi-turn dialogue
Traditional IAD methods v v
Few-shot IAD methods v v v
LVLMs v v
AnomalyGPT (ours) v v v v v

Table 1. Comparison between our AnomalyGPT and existing methods across various functionalities. The “Traditional IAD methods™ in the
table refers to “one-class-one-model” methods such as PatchCore [23], InTra [2 1], and PyramidFlow [13]. “Few-shot IAD methods™ refers
to methods that can perform few-shot learning like RegAD [10], Graphcore [2Y], and WinCLIP [27]. “LVLMs” represents general large
vision-language models like MimiGPT-4 [36], LLaVA [17], and PandaGPT [25]. “Anomaly score” in the table represents just providing
scores for anomaly detection, while “Anomaly judgement” indicates directly assessing the presence of anomaly.



I Introduction

Contributions:

® Sucessfully apply LVLM to the domain of industrial anomaly
detection without manually threshold adjustments.

® Use a visual-textual feature-matching-based decoder to
address the limitation of the LLM’s weaker discernment of
fine-grained semantic and alleviate the constrains of LLM'’s
restricted ability to solely generate text outputs.

® Employ prompt embeddings for fine-tuning.

® Be capable of engaging in in-context few-shot learning on
new datasets.
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I Anomaly Simulation PEII‘N [:
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The Poisson editing method [20] has been developed to seamlessly clone an object from one
image into another image by solving the Poisson partial differential equations.

[20] Patrick Perez, Michel Gangnet, and Andrew Blake. Poisson image editing. In ACM SIGGRAPH
2003 Papers, pages 313— 318. 2003.

Cut-paste -

Poisson -

Figure 3. Illustration of the comparison between cut-paste and

poisson image editing. The results of cut-paste exhibit evident

discontinuities and the results of poisson image editing are more 8
natural.



BIGRASHET SR 7E

PAttern Recognition and NEuwral Computing

I Image Decoder PHI‘NP_[:

Fte:rt = R2XCtext
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I Experiments

MVTec-AD VisA
Setup Method

Image-AUC Pixel-AUC  Accuracy Image-AUC Pixel-AUC  Accuracy

SPADE 81.0+20 912404 - 795+40 956+04 -

PaDiM 766+31 ‘893409 - 62.8+54 89.9+0.8 -

1-shot PatchCore 8344+3.0 920+1.0 - 799+29 954+06 -

WinCLIP 93.1+20 952405 - 83.8+40 964+04 -
AnomalyGPT (ours) 941+1.1 953+0.1 861+11 874+08 962+0.1 774+1.0

SPADE 3294+26 920103 - 80.7+£5.0 962+04 -

PaDiM 18P 4£31 913:1+07 - 674 +5.1 92.0+0.7 -

2-shot PatchCore 86.3+33 933406 - 81.6 £4.0 96.1 £0.5 -

WinCLIP 944+ 1.3 96.0+0.3 - 846+24 968 +03 -
AnomalyGPT (ours) 955+08 956+02 848-+08 886+0.7 964+0.1 77.5+03

SPADE 348+25 927403 - 8174+ 34 966103 -

PaDiM 804+25 926+0.7 - 728429 9324405 -

4-shot PatchCore 888 +26 943405 - 853421 968103 -

WinCLIP 295.2+13 962+03 - 873+ 1.8 97.2+0.2 -
AnomalyGPT (ours) 96.3+03 96.2+0.1 850+03 9096+07 96.7+0.1 77.7+04

Table 2. Few-shot IAD results on MVTec-AD and VisA datasets. Results are listed as the average of 5 runs and the best-performing method

1s In bold. The results for SPADE, PalhM, PatchCore and WinCLIP are reported from [ 1].
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Method Image-AUC  Pixel-AUC  Accuracy
PaDiM (Unified) 84.2 89.5 -
JNLD (Unified) 91.3 88.6 -
UniAD 96.5 96.8 -
AnomalyGPT (ours) 97.4 93.1 93.3

Table 3. Unsupervised anomaly detection results on MVTec-AD

dataset. The best-performing method is in bold and the results for
PaDiM and JNLD are reported from [35].
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Deades Proaptlessier TIN LORA MVTec-AD (unsupervised) VisA (1-shot)
Image-AUC  Pixel-AUC  Accuracy Image-AUC Pixel-AUC  Accuracy

v - - 122 - - 56.5

v v - - 73.4 - - 56.6

v v - - 79.8 - - 63.4

v v 97.1 90.9 72.2 85.8 96.2 56.5

v v v 97.1 90.9 84.2 85.8 96.2 64.7

v v v v 96.0 88.1 83.9 85.8 96.5 2.1

v 97.1 90.9 90.3 85.8 96.2 754

v v v 97.4 93.1 93.3 874 96.2 77.4

Table 4. Results of ablation studies. The v* in “Decoder” and “Prompt learner” columns indicate module inclusion. The v* in “LLM”
column denotes whether use LLLM for inference and the v* in “LoRA” column denotes whether use LoRA to fine-tune LLM. In settings
without LLM, the maximum anomaly score from normal samples is used as the classification threshold. In settings without decoder, due
to the sole textual output from the LLM, we cannot compute image-level and pixel-level AUC.
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I Qualitative Examples

Is there any anomaly in the image? 5 2

Yes, there 1s an anomaly in the
l' image, at the bottom of the image.

User input

What's this in the image? 5 2

.. In the image, there is a white pill or

medication on a black surface.
Model output

Figure 5. Qualitative example of AnomalyGPT in the unsuper-
vised setting. AnomalyGPT is capable of detecting anomaly, pin-
pointing its location, providing pixel-level localization results and
answering questions about the image.
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Is there any anomaly in the image? 5 g

Yes, there is an anomaly in the
" image, at the top of the image.

Normal input

What is the material in the picture? 5 2

|| The material in the picture is leather.

Query input
Tell me something about the leather in the image. 52

The leather in the image is described as brown
|| and rough, which suggests that it is made from
Model output a high-quality, durable leather material.

Figure 6. Qualitative example of AnomalyGPT in the one-
normal-shot setting. The localization performance is slightly
lower compared to the unsupervised setting due to the absence of

parameter training. .
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