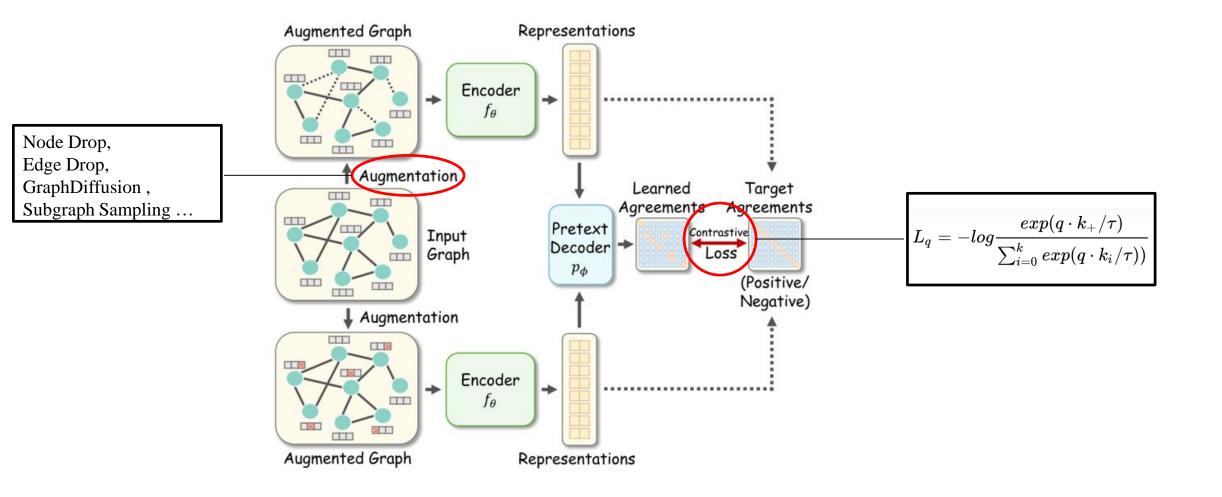
<u>Rethinking and Scaling Up Graph Contrastive Learning: An</u> <u>Extremely Efficient Approach with Group Discrimination</u>

(arxiv, 2022)

paper

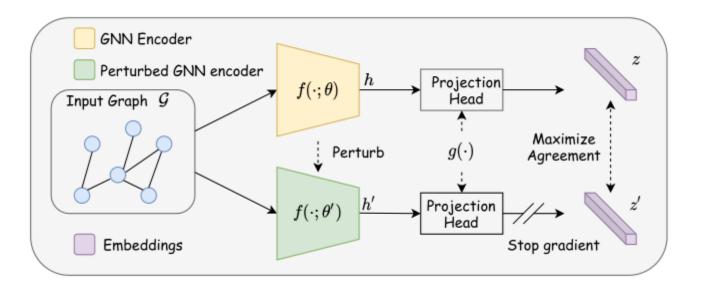
Contrastive Learning for GRL



Augment aspect

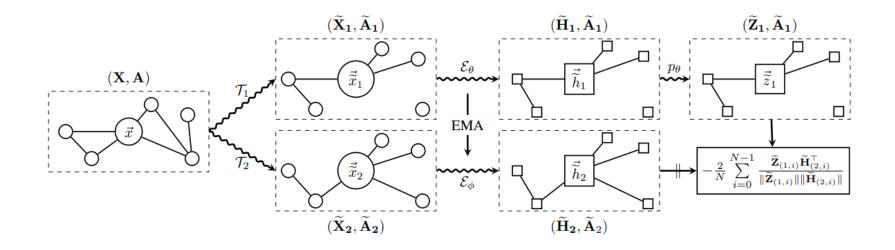
Graph Contrastive Learning with no data augmentation, like <u>SimGRACE</u>, <u>SimGCL</u>

Add random noise to the encoder parameter to construct contrast views



Contrastive Loss/manner

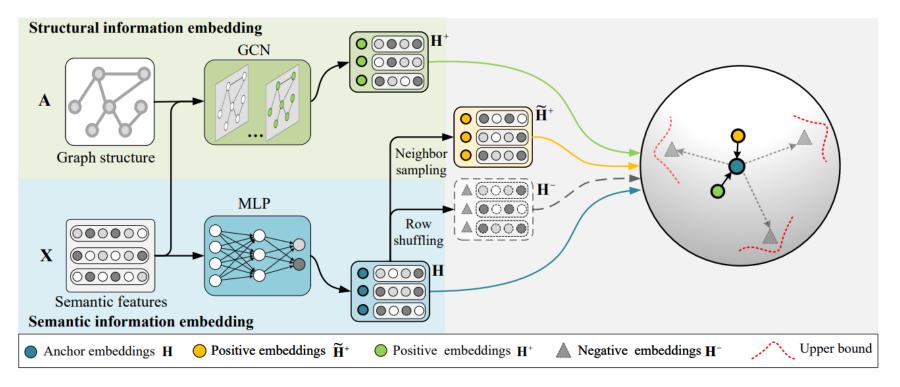
GCL with no negative pairs in loss, like <u>BGRL</u>, <u>GBT</u>



Efficient Contrastive Learning for GRL

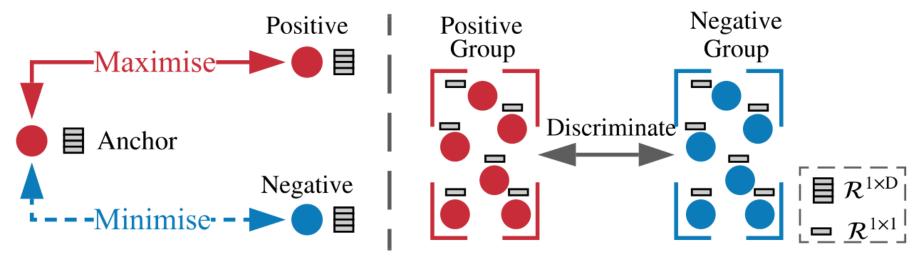
Novel Paradigm

Proposed novel contrastive (self-supervised) learning paradigm, like <u>SUGRL</u>



$$\mathcal{L}_{S} = \frac{1}{k} \sum_{i=1}^{k} \left\{ d\left(\mathbf{h}, \mathbf{h}^{+}\right)^{2} - d\left(\mathbf{h}, \mathbf{h}_{i}^{-}\right)^{2} + \alpha \right\}_{+},$$
$$\mathcal{L}_{N} = \frac{1}{k} \sum_{j=1}^{k} \left\{ d\left(\mathbf{h}, \widetilde{\mathbf{h}}^{+}\right)^{2} - d\left(\mathbf{h}, \mathbf{h}_{j}^{-}\right)^{2} + \alpha \right\}_{+},$$

Main Idea



(a)Node-to-node Comparison

(b) Group Discrimination

Training time in seconds comparison between GGD and GBT on ogbn-arxiv

Method Pre	Tr	Еро	Total(E)	Imp(E)	Total(T)	Imp(T)	Acc
GBT(256) 5.52	6.47	300	1,946.52	-	1,941.00	-	70.1
GGD(256) 6.26	0.18	1	6.44	302.25 ×	0.18	10,783.33×	70.3
GGD(1,500) 6.26	0.95	1	7.21	269.96×	0.95	2,043.16×	71.6

Rethinking DGI

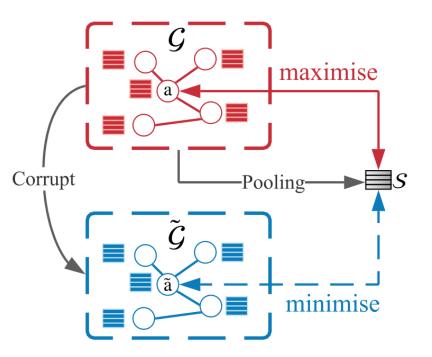
Given graph *G* with attributes $X \in \mathcal{R}^{N*D}$

Graph \widetilde{G} denotes G with corrupt operate

Obtain node embeddings as $\mathbf{z} = GNN(G, X)$, where $\mathbf{z} \in \mathcal{R}^{N * \widehat{D}}$

Obtain summery vector s = Readout(GNN(G, X))

 $\mathcal{D}(z_i, s) = z_i \cdot w \cdot s$ $\mathcal{L}_{DGI} = \frac{1}{2N} \left(\sum_{i=1}^{N} \log \mathcal{D}(z_i, s) + \log(1 - \mathcal{D}(\tilde{z}_i, s)) \right)$



Constant Summary Vector

Observation: the summary vectors are essentially a constant vector ϵI , where ϵ is a scalar and $I \in \mathbb{R}^D$ is an all-ones vector.

Statistics	Cora	CiteSeer	PubMed
Mean	0.6225	0.6225	0.6225
Std	5.41e-05	2.86e-05	6.58e-05
Range	0.0036	0.0030	0.0032

Table 2: Summary vector statistics on three datasets.

• Xavier initialization

The GNN encoder is initialised with **Xavier initialisation** using a uniform distribution, so that the value range of embeddings generated with such an encoder is very small

• Sigmoid function

Sigmoid function is inappropriately applied on the summary vector, which makes the value difference smaller.

The summary vectors contains no useful information.

Constant Summary Vector

Replace the summery vector with different constant vector. Except for 0, the model performance is trivially affected by the value assigned to the constant summary vector.

Table 3: The experiment result on three datasets with changing value from 0 to 1.0 for the summary vector.

Dataset	0	0.2	0.4	0.6	0.8	1.0
Cora	70.3 ± 0.7	82.4±0.2	82.3±0.3	82.5±0.4	82.3±0.3	82.5 ± 0.1
CiteSeer	61.8 ± 0.8	71.7±0.6	71.9±0.7	71.6±0.9	71.7±1.0	71.6±0.8
PubMed	68.3 ± 1.5	77.8±0.5	77.9±0.8	77.7±0.9	77.4±1.1	77.2±0.9

Maybe No need for summary vector as anchor & What truly leads to the success of DGI?

Simplifying DGI & "Group Discrimination"

Simplifying: Predigest the loss proposed in DGI by using an all-ones vector as the summary vector and and simplifying the discriminator.

$$\begin{split} \mathcal{L}_{DGI} &= \frac{1}{2N} (\sum_{i=1}^{N} \log \mathcal{D}(z_{i}, s) + \log(1 - \mathcal{D}(\tilde{z}_{i}, s))), \\ &= \frac{1}{2N} (\sum_{i=1}^{N} \log(z_{i} \cdot s) + \log(1 - \tilde{z}_{i} \cdot s))), \\ &= \frac{1}{2N} (\sum_{i=1}^{N} \log(sum(z_{i})) + \log(1 - sum(\tilde{z}_{i}))), \end{split}$$
(1)

$$\mathcal{L}_{BCE} = \frac{1}{2N} (\sum_{i=1}^{2N} y_i \log h_i + (1 - y_i) \log(1 - h_i)), \quad h_i = sum(z_i) \quad (3)$$

Table 4: The experiment result on three datasets with different aggregation function on node embeddings.

Method	Cora	CiteSeer	PubMed
Sum	82.5 ± 0.2	71.7 ± 0.6	77.7 ± 0.5
Mean	81.8 ± 0.5	71.8 ± 1.1	76.5 ± 1.2
Min	80.4 ± 1.3	61.7 ± 1.8	70.1 ± 1.9
Max	71.4 ± 1.2	65.3 ± 1.4	70.2 ± 2.8
linear	82.2 ± 0.4	72.1 ± 0.7	77.9 ± 0.5

Complexity

• InfoNCE

$$\mathcal{L}_{\text{NCE}}(i) = -\log \frac{e^{z_i \cdot c_i/\tau}}{\sum_{k=1}^{N} e^{z_i \cdot z_k/\tau}}, \qquad O(ND^2)$$

• JSD

 $\mathcal{L}_{JSD}(i) = -\log \mathcal{D}(z_i, c_i) + \log(1 - \mathcal{D}(\tilde{z}_i, c_i)),$

 $O(D^2)$

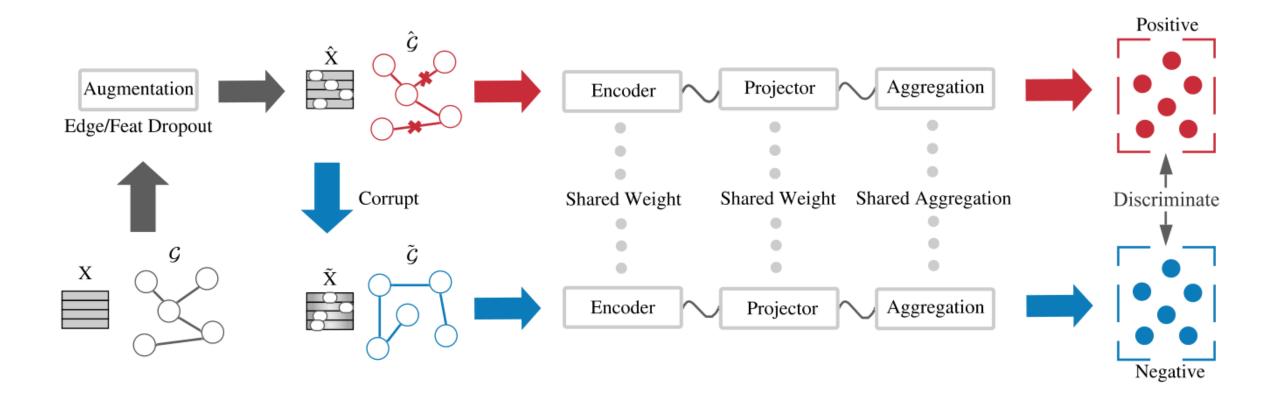
• BGRL

$$\mathcal{L}_{BGRL}(i) = -\frac{z_{(\mathcal{G}_1,i)} \cdot h_{(\mathcal{G}_2,i)}}{\parallel z_{(\mathcal{G}_1,i)} \parallel \cdot \parallel h_{(\mathcal{G}_2,i)} \parallel}, \qquad O(D^2)$$

• GD

$$\mathcal{L}_{BCE} = \frac{1}{2N} \left(\sum_{i=1}^{2N} y_i \log h_i + (1 - y_i) \log(1 - h_i) \right), \quad h_i = sum(z_i) \quad (3) \quad 0(1)$$

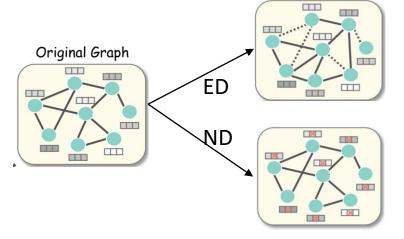
Graph Group Discrimination



Graph Group Discrimination

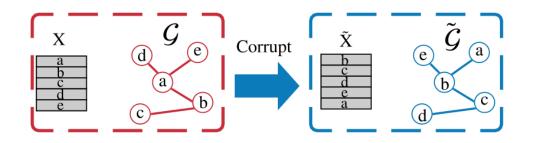
□ Augmentation

Edge dropout removes a predefined fraction of edges, **node dropout** to mask a predefined proportion of feature dimension.



Corruption

Corrupt original graph as negative group.



Graph Group Discrimination

□ The Siamese GNN

GNN encoder(GCN) + projector head + shared weight.

□ Group Discrimination

Adopts binary cross entropy (BCE) loss to discriminate two groups of node embeddings:

$$\mathcal{L}_{BCE} = -\frac{1}{2N} (\sum_{i=1}^{2N} y_i \log h_i + (1 - y_i) \log(1 - h_i)), \qquad (4)$$

□ Model Inference

 $egin{aligned} \mathbf{H}_{ heta} &= \mathbf{GNN}(\mathcal{G}, \mathbf{X}) \ \mathbf{H}_{ heta}^{ ext{global}} &= \mathbf{A}^{ ext{n}} \cdot \mathbf{H}_{ heta} \ \mathbf{H} &= \mathbf{H}_{ heta}^{ ext{global}} + \mathbf{H}_{ heta} \end{aligned}$

Datasets

Dataset	Nodes	Edges	Features	Classes
Cora	2,708	5,429	1,433	7
CiteSeer	3,327	4,732	3,703	6
PubMed	19,717	44,338	500	3
Amazon Computers	13,752	245,861	767	10
Amazon Photo	7,650	119,081	745	8
ogbn-arxiv	169,343	1,166,243	128	40
ogbn-products	2,449,029	61,859,140	100	47
ogbn-papers-100M	111,059,956	1,615,685,872	100	172

Table 14: The statistics of eight benchmark datasets.

Experiments

Evaluating on Small- and Medium-scale Datasets—Accuracy

Data	Method	Cora	CiteSeer	PubMed	Comp	Photo
X, A, Y	GCN	81.5	70.3	79.0	$76.3 {\pm} 0.5$	87.3±1.0
X, A, Y	GAT	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3	79.3 ± 1.1	86.2 ± 1.5
X, A, Y	SGC	81.0±0.0	71.9 ± 0.1	$78.9 {\pm} 0.0$	74.4 ± 0.1	86.4 ± 0.0
X, A, Y	CG3	83.4±0.7	73.6 ±0.8	80.2 ± 0.8	79.9 ± 0.6	89.4 ± 0.5
X, A	DGI	81.7±0.6	71.5 ± 0.7	77.3±0.6	75.9 ± 0.6	83.1±0.5
X, A	GMI	82.7±0.2	73.0 ± 0.3	80.1 ± 0.2	76.8 ± 0.1	85.1 ± 0.1
X, A	MVGRL	82.9±0.7	72.6 ± 0.7	79.4 ± 0.3	79.0 ± 0.6	87.3 ± 0.3
X, A	GRACE	80.0±0.4	71.7 ± 0.6	79.5 ± 1.1	71.8 ± 0.4	81.8 ± 1.0
X, A	BGRL	80.5±1.0	71.0 ± 1.2	79.5 ± 0.6	89.2 ± 0.9	91.2 ± 0.8
X, A	GBT	81.0±0.5	70.8 ± 0.2	79.0 ± 0.1	88.5 ± 1.0	91.1 ± 0.7
X, A	GGD	84.1 ±0.4	73.0 ± 0.6	81.3 ±0.8	90.1 ±0.9	92.5 ±0.6

Experiments

Evaluating on Small- and Medium-scale Datasets—Efficiency and Memory Consumption

Method	Cora	CiteSeer	PubMed	Comp	Photo
DGI	0.085	0.134	0.158	0.171	0.059
GMI	0.394	0.497	2.285	1.297	0.637
MVGRL	0.123	0.171	0.488	0.663	0.468
GRACE	0.056	0.092	0.893	0.546	0.203
BGRL	0.085	0.094	0.147	0.337	0.273
GBT	0.073	0.072	0.103	0.492	0.173
GGD	0.010	0.021	0.015	0.016	0.009
Improve	7.3-39.4×	3.4-23.7×	6.9-152.3×	10.7-15.3×	19.2-70.8>

	Method	Cora	CiteSeer	PubMed	Comp	Photo
	DGI	4,189	8,199	11,471	7,991	4,946
	GMI	4,527	5,467	14,697	10,655	5,219
	MVGRL	5,381	5,429	6,619	6,645	6,645
Memory	GRACE	1,913	2,043	12,597	8,129	4,881
wichnory	BGRL	1,627	1,749	2,299	5,069	3,303
	GBT	1,651	1,799	2,461	5,037	2,641
	GGD	1,475	1,587	1,629	1,787	1,637
	Improve	10.7-72.6%	11.8-80.6%	27.2-85.8%	64.5-83.2%	38.0-75.4%

Time

Experiments

ogbn-arxiv

Evaluating on Large-scale Datasets

Method	Valid	Test	Memory	Time	Total
Supervised GCN	73.0 ± 0.2	71.7 ± 0.3	-	-	-
MLP Node2vec	57.7 ± 0.4 71.3 ± 0.1	55.5 ± 0.2 70.1 ± 0.1		-	-
DGI	71.3±0.1	70.3±0.2	-	-	-
GRACE(10k epos) BGRL(10k epos)	72.6 ± 0.2 72.5 ± 0.1	71.5 ± 0.1 71.6 ± 0.1	- OOM (Full-graph)	- /	- /
GBT(300 epos)	71.0 ± 0.1	70.1 ± 0.2	14,959MB	6.47	1,941.00
GGD(1 epo)	72.7±0.3	71.6 ± 0.5	4,513MB 69.8%	0.18	0.18 10,783×

	Method	Valid	Test	Memory	Time	Total
	Supervised GCN	92.0±0.0	75.6 ± 0.2	-	-	
cts	MLP Node2vec	75.5 ± 0.0 70.0 ± 0.0	61.1 ± 0.0 68.8 ± 0.0		-	
	BGRL (100 epos) GBT (100 epos)	78.1±2.1 85.0±0.1	64.0 ± 1.6 70.5 ± 0.4	29,303MB 20,419MB		5,326m40s 4,863m20s
	GGD(1 epo)	90.9±0.5	75.7 ±0.4	4,391MB 78.5%	12m46s	12m46s 381×

ogbn-products

Evaluating on Large-scale Datasets

ogbn-papers100M:

Table 12: Node classification result and efficiency comparison on ogbn-papers100M.

Method	Validation	Test	Memory	Time
Supervised SGC	63.3±0.2	66.5 ± 0.2	-	-
MLP Node2vec	47.2 ± 0.3 55.6 ± 0.0	49.6 ± 0.3 58.1 ± 0.0	-	-
BGRL (1 epoch) GBT (1 epoch)	59.3 ± 0.5 58.9 ± 0.4	62.1 ± 0.3 61.5 ± 0.5	14,057MB 13,185MB	26h28m 24h38m
GGD(1 epoch)	60.2 ± 0.3	63.5±0.5	4,105MB 68.9%	9h15m 2.7×

Convergence speed comparison

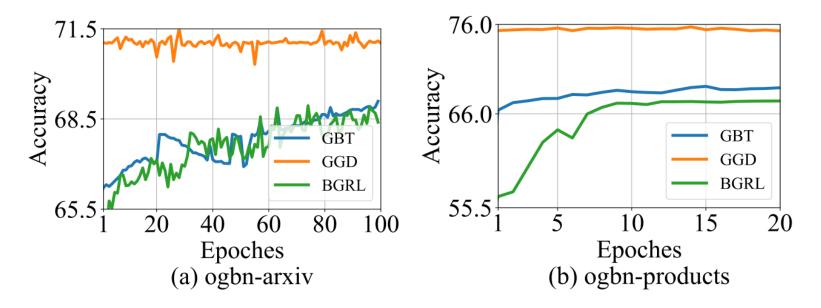


Table 6: Comparison of DGI using corruption technique and Erdős-Rényi random graphs.

Method	Cora	CiteSeer	PubMed
DGI _{corrupt}	82.7 ± 0.6	71.9 ± 0.5	77.9 ± 0.7
DGI _{Erdos–Renyi}	82.6 ± 0.4	72.1 ± 0.5	79.0 ± 1.0

Thanks