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F} Knowledge Distillation ool

Teacher Model

Goal: transfer knowledge from a large model to a small model for
model compression and acceleration.




F Out-of-domain knowledge distillation (OOD-KD) - S| @

However, the original training data or even the data domain is often unreachable
due to privacy or copyright reasons.
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Even though data from different domains exhibit divergent global distributions,
their local distributions, such as patches in images, may however resemble each
other.
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The core idea of MosaicKD is to synthesize in-domain data.




= = HAERELF ]
F Formulation: vanilla KD Eooooad)

Vanilla KD:
Dataset: D = {X,), Pvxy} Teacher model: 7'(x;0;) Student model: S(x;6;)

0; = argming Eq, ywps, oy kL (T(2:04)||S(2505)) + Lee(S(:0s),y)]

OOD KD:

00D dataset: D’ = {X’,)’, Pyrxyn}, where X' # X and Y’ # Y

X' ={x},75,....xy; vj € REXWx31

Generator: G(z;0,) Discriminator: D(x;0,)

minmax By~ pe [k (T(G(2))[[S(G(2)))] : d(Pe, Pxr) < €}
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Figure 2: The framework of MosaicKD.
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00D dataset: X' = {z, x5, ..., w)y;x; € RFEXWX3} - 1 o [ cropping

Patch dataset: ¢ = {cq, co, ...;(:M;c@- < RL*LX?’} <’ C(-)

Patch Learning:

In(%n mgx Livcal (G, D) = Kyrnpy, log D(C(&?’))] +E.~p, [log(1 — D(C(G(2))))

Label Space Aligning:
Hl(;irn Ealt’gn(Ga D, T) — EzNPz [H [p(y|G(Z); Qt)”

MosaicKD:

minmax Lpro(G, D, 5, T) =z, () [ (T(G(2))[S(G(2)))] - R(G, D, T)) < €}

minmax Lpro(G, D, 5, T) = Eenp, [ (T(G(2))[S(G(2)))] = AR(G. D, T))
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Algorithm 1 MosaicKD for out-of-domain knowledge distillation

Input: Pretrained teacher 7'(x; 6;), student S(x; ) and out-of-domain data X".
Output: An optimized student S(x; 0;)

1: Initialize a generator G(z;6,) and a discriminator D(z;0;)

2: repeat

3 > Patch Discrimination

4 Sample a mini-batch of OOD data 2’ from X’ and synthetic data = from G(z);

5: update discriminator to distinguish fake patches from real ones using £;cq; from Eqn. [3;
6 > (Generation

7 Sample a mini-batch of generated data x from G(z);

8 Update generator G to:

9: (a) fool the discriminator D using L;,.q; from Eqn. [3;
10: (b) align label space with teacher T" using L,;;,, from Eqn. @;
11: (c) fool the student S using Lpro from Eqn. ﬂq;
12: > Knowledge Distillation
13: for j steps do:
14: Sample generated samples from G(z);
15: Update student through knowledge distillation using £ pro from Eqn. []
16: end for

17: until converge
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resnet-34  vgg-11 wrnd40-2 wrnd0-2 wrnd4(0-2

Method Data resnet-18 resnet-18 wrnl6-1 wrnd0-1 wrnl6-2 Yerage
Teacher CIFAR-100 78.05 71.32 75.83 75.83 75.83 7537
Student (Original Data)  77-10 77.10 65.31 72.19 7356 73.05
KD [18] 77.87 75.07 64.06 68.58 7079 7227
DAFL [17] 7447 54.16 2088  42.83 4370  47.20
ZSKT [33] DataF 67.74 54.31 36.66 53.60 5459  53.38
Deeplnv. [61] ata-Free 61.32 54.13 53.77 61.33 61.34 58.38
DFQ [§] 77.01 66.21 51.27 54.43 6479  62.74
KD [18] 73.55 68.04 1747 61.17 63.48 62.74
Balanced [33] 68.54 64.14 50.50  56.50 57.33 59.40
FitNet [Z1]] CIFAR-10 70.14 67.52 50.31 60.17 60.60  63.15
RKD [38] (OOD D'ﬂtﬂ) 67.45 63.06 45.37 53.29 57.10 57.25
CRD [47] 71.23 66.48 47.00  59.59 61.37 61.13
SSKD [54] 73.81 68.72 49.57 60.71 64.61 63.48
Ours 77.01 71.56 61.01 69.14 69.41 69.55

Table 1: Test accuracy (%) of student networks trained with the following settings: conventional KD
with original training data, data-free KD with synthetic data, and OOD-KD with OOD data. }: As
Places365 and ImageNet contain some in-domain samples, we craft OOD subsets with low teacher
confidence (high entropy) from the original dataset, so as to match our OOD setting.
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KD [18] 50.89 50.52 36.54 36.87 41.69 43.3(0)
Balanced [33] ImaceNett 41.74 47.04 31.61 29.57 35.65 37.12
FitNet [41] oongs N 60.15 58.23 42.63 4421 48.53 50.75
RKD [3% ( ubset) 40.26 35.80 31.15 24.95 34.48 33.32
Ours 75.81 68.94 59.32 66.61 67.36 67.60
KD [0%] 43.49 46.24 33.28 31.39 36.37 38.15
Balanced [33 Places3st 28.16 38.85 23.22 21.54 28.62 28.08
FitNet [41] (odiﬁcgh bect) 54.08 54.15 36.33 4421 38.74 45.50
RKD [47] ‘ 30.25 33.06 28.07 21.12 21.12 26.72
Ours 74.70 68.55 56.70 65.34 65.89 66.23
KD [18] 31.55 34.00 19.77 23.07 24.75 26.63
Balanced [23] SVEN 26.93 29.34 16.18 18.96 21.50 22.58
FitNet [41] (00D Data) 33.69 36.22 20.02 23.72 25.41 27.81
RKD [3%] 26.83 27.31 18.09 22.55 24.29 23.81
Ours 47.18 37.63 31.87 45.84 44.40 41.38

Table 1: Test accuracy (%) of student networks trained with the following settings: conventional KD
with original training data, data-free KD with synthetic data, and OOD-KD with OOD data. {: As
Places365 and ImageNet contain some in-domain samples, we craft OOD subsets with low teacher
confidence (high entropy) from the original dataset, so as to match our OOD setting.
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Method CUB-200 Stanford Dogs Method Data FLOPs mloU
Teacher 49 41 56.65 Teacher NYUv?2 41G 0.519
Student 41.44 48.61 Student 5.54G  0.375
KD 11.07 10.24 ZSKT Data-Free 5.54G  0.364
Balanced 4.56 6.42 DAFL 554G  0.105
FitNet 18.12 19.13 KD ImaceNet 5.54G  0.406
Ours 26.11 28.02 Ours & 554G 0.454

Table 3: Test accuracy of student networks on
fine-grained datasets.

Table 2: Mean Intersection over Union (mloU)
of student models on NYUv2 data set.
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Figure 3: Statistical information of OOD data and out generated data. Category percentage (the first
y-axis) and FID score (the second y-axis) to original data (CIFAR-100) is reported.
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Patch size 1 2 4 S 18 22 32
Acc. 5227 5558 5894 6101 6103 5394 5134
CIFAR-1I0mry Hu3 447 878 1682 2281 2607 2830
o acs Acc. 4644 4500 5067 5670 5399 5344  40.29
FID 1232 1477 2132 3009 3554 38.64 4141

F— Acc. 1983 2186 3209 3187 2105 2208 2054

FID' 93.39 146.76 145.64 143.72 148.33 147.25 148.94

Table 4: Test accuracy (%) of students obtained with different patch sizes. The Patch FID score
between OOD data and original data is also reported. Results show that our approach requires smaller
patch sizes to handle severe domain discrepancies.
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Teacher prediction : apple Teacher prediction : tree Teacher prediction : apple ~ Teacher prediction : tree
True category: car True categories: car, deer, frog True category: apple True category: tree

(a) W/O Patch Learnmg (b) Patch Learning (Ours)

Figure 4: Visualization of synthetic data with and without patch learning. GANs without patch
learning will be trapped by OOD data and fails to present correct semantic for different categories
(highlighted in blue). In our method, the semantic can be correctly aligned with target domain.
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Noise-Robust Bidirectional Learning with Dynamic Sample Reweighting
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~ precicted probabilty y is a label other than the given label y.
Figure 1: Overview of the BLDR method. We adopt a two-head @
model, which has a positive head trained in the normal way and a y is a label other than the given label y and the
negative head trained with Equation 2. By normalizing the predicted corrected label y for every iteration during training.
probability of the negative head, we assign a weight to each sample.
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FC layer 1 I'C layer 2 FC layer 3
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A 4 Cross entropy loss from labels

Softmax 1 Softmax 2 /

Accuracy:

i

By
Bl

Acceleration:

Figure 2. This figure shows the details of a ResNet equipped with proposed self distillation. (i) A ResNet has been divided into four
sections according to their depth. (11) Additional bottleneck and fully connected layers are set after each section, which constitutes multiple
classifiers. (iii) All of the classifiers can be utilized independently, with different accuracy and response time. (iv) Each classifier is trained
under three kinds of supervision as depicted. (v) Parts under the dash line can be removed in inference.
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Worst training samples on the noisy labels. Figure left only uses
bidirectional learning scheme to train the model, while right one
combines with the dynamic sample reweighting strategy.
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Table 1: Comparison of test accuracies (%) on CIFAR-10N and CIFAR-100N using different methods. The results of the comparison methods
are derived from http://noisylabels.com/, and we bold the best case of the comparison methods to visually compare with BLDR. 1 indicates

the boost value of our method, no boost is indicated by

¥

Method CORES* PES(semi) ELR+ Divide-Mix SOP BLDR T
Aggre | 95.25+£0.09 | 94.66 =0.18 | 9483 £0.10 | 95.01 £0.71 | 95.61 +0.13 | 96.16 | 0.55
CIFAR-10N | Randl | 94.454+0.14 | 95.06 £ 0.15 | 94.43+0.41 | 95.16 £0.19 | 95.284+0.13 | 96.05 | 0.77
Worst | 91.66 £0.09 | 92.68 £0.22 | 91.09 =1.60 | 92.56 £0.42 | 93.24 £0.21 | 94.53 | 1.29

CIFAR-10N | Noisy | 55.72+£0.42 | 70.36 £ 0.33 | 66.72 £0.07 | 71.13+0.48 | 67.81 +0.23 — —

Table 2: The label noise detection performance of our method. A fixed threshold is set for the various noise cases on CIFAR-N.

Dataset CIFAR-10ON CIFAR-100N
Noisy type Aggre Randl Worst Noisy
Precision | 81.42 89.21 96.42 —
BLDR Recall 90.15 93.74 94.19 —
Fl 85.56 9142 95.29 —
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Figure 3: The relationship between the threshold value and the final
F1 score obtained among different datasets and different noise cases.




