

Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

Gongfan Fang^{1,4}, Yifan Bao¹, Jie Song¹, Xinchao Wang², Donglin Xie¹ Chengchao Shen³, Mingli Song¹*

¹Zhejiang University, ²National University of Singapore, ³Central South University

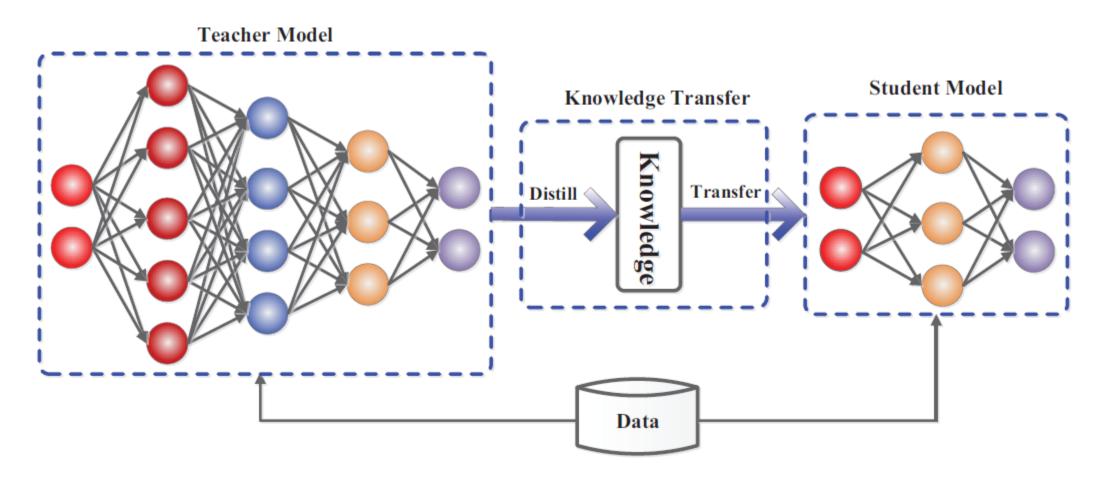
⁴Alibaba-Zhejiang University Joint Institute of Frontier Technologies

{fgf,yifanbao,sjie,donglinxie,brooksong}@zju.edu.cn

xinchao@nus.edu.sg,scc.cs@csu.edu.cn

NIPS 2021

Knowledge Distillation

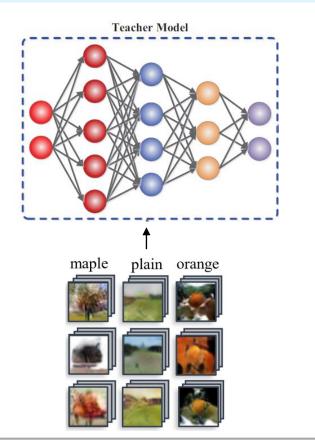


Goal: transfer knowledge from a large model to a small model for model compression and acceleration.

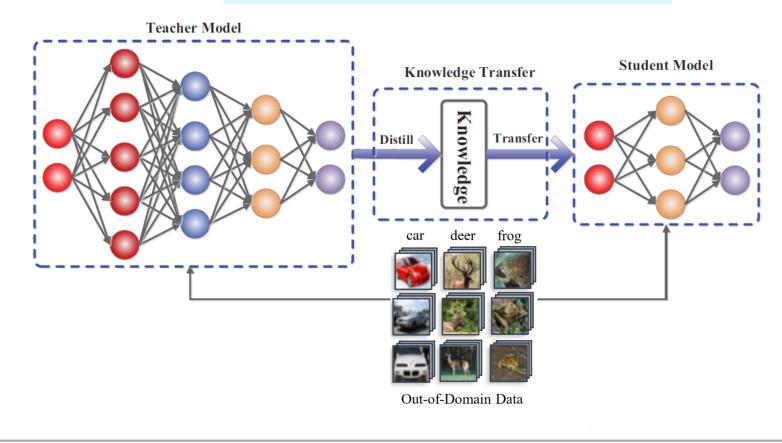
Out-of-domain knowledge distillation (OOD-KD)

However, the original training data or even the data domain is often unreachable due to privacy or copyright reasons.

Teacher model training

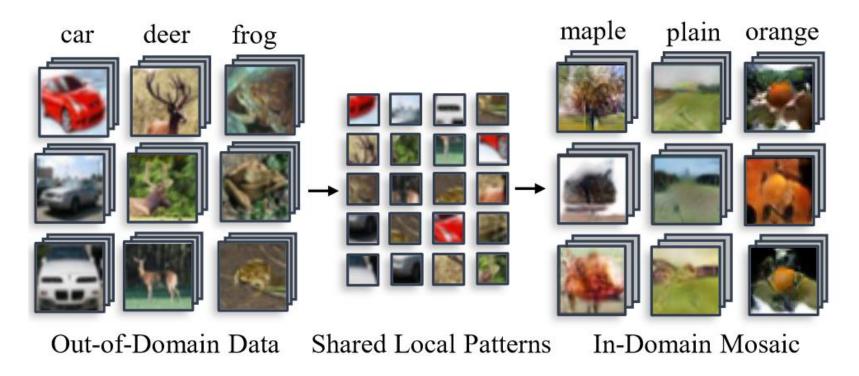


Student model training



MosaicKD

Even though data from different domains exhibit divergent global distributions, their local distributions, such as patches in images, may however resemble each other.



The core idea of MosaicKD is to synthesize in-domain data.

Formulation: vanilla KD

Vanilla KD:

Dataset: $\mathcal{D} = \{\mathcal{X}, \mathcal{Y}, P_{\mathcal{X} \times \mathcal{Y}}\}$ Teacher model: $T(x; \theta_t)$ Student model: $S(x; \theta_s)$

$$\theta_s^* = \arg\min_{\theta_s} \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} \left[\ell_{\text{KL}}(T(x; \theta_t) || S(x; \theta_s)) + \ell_{\text{CE}}(S(x; \theta_s), y) \right]$$

OOD KD:

OOD dataset: $\mathcal{D}' = \{\mathcal{X}', \mathcal{Y}', P_{\mathcal{X}' \times \mathcal{Y}'}\}$, where $\mathcal{X}' \neq \mathcal{X}$ and $\mathcal{Y}' \neq \mathcal{Y}$. $X' = \{x'_1, x'_2, ..., x'_N; x'_i \in \mathbb{R}^{H \times W \times 3}\}$

Generator: $G(z; \theta_q)$ Discriminator: $D(x; \theta_d)$

$$\min_{S} \max_{G} \left\{ \mathbb{E}_{x \sim P_{G}} \left[\ell_{KL}(T(G(z)) || S(G(z))) \right] : d(P_{G}, P_{X'}) \leq \epsilon \right\}$$

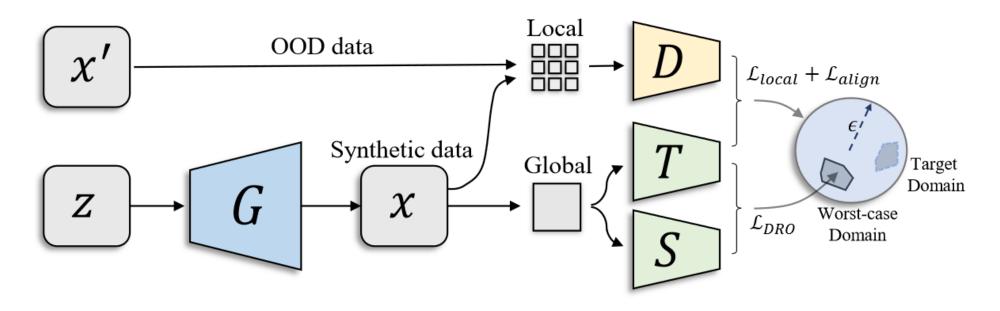


Figure 2: The framework of MosaicKD.

Formulation: OOD KD

OOD dataset:
$$X' = \{x_1', x_2', ..., x_N'; x_i' \in \mathbb{R}^{H \times W \times 3}\}$$
 \downarrow $L \times L$ cropping Patch dataset: $C = \{c_1, c_2, ..., c_M; c_i \in \mathbb{R}^{L \times L \times 3}\}$ \leftarrow $C(\cdot)$

Patch Learning:

$$\min_{G} \max_{D} \mathcal{L}_{local}(G, D) = \mathbb{E}_{x' \sim P_{X'}} \left[\log D(C(x')) \right] + \mathbb{E}_{z \sim P_z} \left[\log (1 - D(C(G(z)))) \right]$$

Label Space Aligning:

$$\min_{G} \mathcal{L}_{align}(G, D, T) = \mathbb{E}_{z \sim P_z} \left[H \left[p(y|G(z), \theta_t) \right] \right]$$

MosaicKD:

$$\min_{S} \max_{G} \mathcal{L}_{DRO}(G, D, S, T) = \{\mathbb{E}_{z \sim p_{z}(z)} \left[\ell_{\text{KL}}(T(G(z)) \| S(G(z))) \right] : \mathcal{R}(G, D, T)) \leq \epsilon \}$$

$$\min_{S} \max_{G} \mathcal{L}_{DRO}(G, D, S, T) = \mathbb{E}_{x \sim P_{z}} \left[\ell_{\text{KL}}(T(G(z)) \| S(G(z))) \right] - \lambda \mathcal{R}(G, D, T))$$

Pseudo-code

Algorithm 1 MosaicKD for out-of-domain knowledge distillation

```
Input: Pretrained teacher T(x; \theta_t), student S(x; \theta_s) and out-of-domain data X'.
Output: An optimized student S(x; \theta_s)
 1: Initialize a generator G(z; \theta_q) and a discriminator D(z; \theta_d)
 2: repeat
        ▶ Patch Discrimination
 3:
         Sample a mini-batch of OOD data x' from X' and synthetic data x from G(z);
         update discriminator to distinguish fake patches from real ones using \mathcal{L}_{local} from Eqn. 3;
 5:
        ▶ Generation
 6:
         Sample a mini-batch of generated data x from G(z);
         Update generator G to:
 8:
             (a) fool the discriminator D using \mathcal{L}_{local} from Eqn. \mathfrak{I};
 9:
             (b) align label space with teacher T using \mathcal{L}_{align} from Eqn. \boxed{4};
10:
             (c) fool the student S using \mathcal{L}_{DRO} from Eqn. \overline{\Omega};
11:
12:
        ▶ Knowledge Distillation
        for j steps do:
13:
             Sample generated samples from G(z);
14:
             Update student through knowledge distillation using \mathcal{L}_{DRO} from Eqn. \boxed{1}
15:
         end for
16:
17: until converge
```


Method	Data	resnet-34 resnet-18	vgg-11 resnet-18	wrn40-2 wrn16-1	wrn40-2 wrn40-1	wrn40-2 wrn16-2	Average
Teacher	CIFAR-100	78.05	71.32	75.83	75.83	75.83	75.37
Student	(Original Data)	77.10	77.10	65.31	72.19	73.56	73.05
KD [<mark>18</mark>]	(Oliginal Data)	77.87	75.07	64.06	68.58	70.79	72.27
DAFL [7]		74.47	54.16	20.88	42.83	43.70	47.20
ZSKT [33]	Data-Free	67.74	54.31	36.66	53.60	54.59	53.38
DeepInv. [61]	Data-Fiee	61.32	54.13	53.77	61.33	61.34	58.38
DFQ [8]		77.01	66.21	51.27	54.43	64.79	62.74
KD [48]		73.55	68.04	47.47	61.17	63.48	62.74
Balanced [35]		68.54	64.14	50.50	56.50	57.33	59.40
FitNet [41]	CIEAD 10	70.14	67.52	50.31	60.17	60.60	63.15
RKD [38]	CIFAR-10	67.45	63.06	45.37	53.29	57.10	57.25
CRD [47]	(OOD Data)	71.23	66.48	47.00	59.59	61.37	61.13
SSKD [54]		73.81	68.72	49.57	60.71	64.61	63.48
Ours		77.01	71.56	61.01	69.14	69.41	69.55

Table 1: Test accuracy (%) of student networks trained with the following settings: conventional KD with original training data, data-free KD with synthetic data, and OOD-KD with OOD data. †: As Places365 and ImageNet contain some in-domain samples, we craft OOD subsets with low teacher confidence (high entropy) from the original dataset, so as to match our OOD setting.

KD [18]		50.89	50.52	36.54	36.87	41.69	43.30
Balanced [35]	ImagaNatt	41.74	47.04	31.61	29.57	35.65	37.12
FitNet [41]	ImageNet [†]	60.15	58.23	42.63	44.21	48.53	50.75
RKD [38]	(OOD Subset)	40.26	35.80	31.15	24.95	34.48	33.32
Ours		75.81	68.94	59.32	66.61	67.36	67.60
KD [18]		43.49	46.24	33.28	31.39	36.37	38.15
Balanced [35]	Dl 265†	28.16	38.85	23.22	21.54	28.62	28.08
FitNet [41]	Places 365†	54.08	54.15	36.33	44.21	38.74	45.50
RKD [<mark>47</mark>]	(OOD Subset)	30.25	33.06	28.07	21.12	21.12	26.72
Ours		74.70	68.55	56.70	65.34	65.89	66.23
KD [18]		31.55	34.00	19.77	23.07	24.75	26.63
Balanced [35]	CVIIN	26.93	29.34	16.18	18.96	21.50	22.58
FitNet [41]	SVHN (OOD Data)	33.69	36.22	20.02	23.72	25.41	27.81
RKD [38]		26.83	27.31	18.09	22.55	24.29	23.81
Ours		47.18	37.63	31.87	45.84	44.40	41.38

Table 1: Test accuracy (%) of student networks trained with the following settings: conventional KD with original training data, data-free KD with synthetic data, and OOD-KD with OOD data. †: As Places365 and ImageNet contain some in-domain samples, we craft OOD subsets with low teacher confidence (high entropy) from the original dataset, so as to match our OOD setting.

Method	CUB-200	Stanford Dogs
Teacher	49.41	56.65
Student	41.44	48.61
KD	11.07	10.24
Balanced	4.56	6.42
FitNet	18.12	19.13
Ours	26.11	28.02

Table 3: Test accuracy of student networks on fine-grained datasets.

Method	Data	FLOPs	mIoU
Teacher	NYUv2	41 G	0.519
Student	N I UVZ	5.54G	0.375
ZSKT	Data-Free	5.54G	0.364
DAFL	Data-Free	5.54G	0.105
KD	ImagaNat	5.54G	0.406
Ours	ImageNet	5.54G	0.454

Table 2: Mean Intersection over Union (mIoU) of student models on NYUv2 data set.

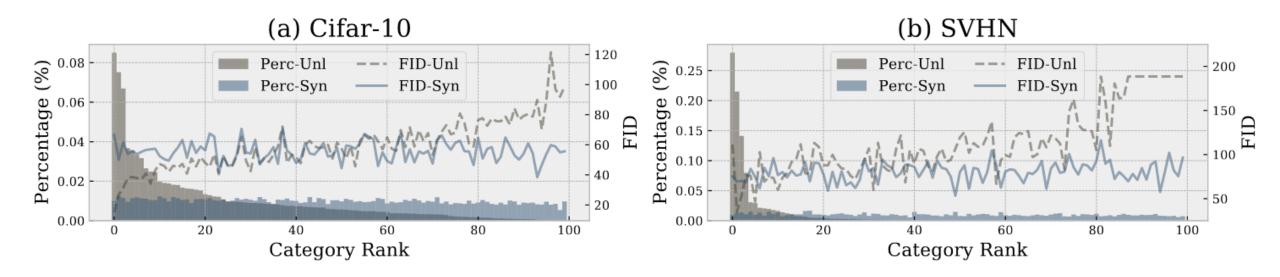


Figure 3: Statistical information of OOD data and out generated data. Category percentage (the first y-axis) and FID score (the second y-axis) to original data (CIFAR-100) is reported.

Patch si	ize	1	2	4	8	18	22	32
CIFAR-10	Acc.	52.22	55.58	58.94	61.01	61.03	58.94	51.34
CIFAR-10	FID	2.43	4.47	8.78	16.82	22.81	26.07	28.30
Places365	Acc.	46.44	45.90	50.67	56.70	53.99	53.44	40.29
Places303	FID	12.32	14.77	21.32	30.09	35.54	38.64	41.41
SVHN	Acc.	19.83	21.86	32.09	31.87	21.05	22.08	20.54
SVIIN	FID	93.39	146.76	145.64	143.72	148.33	147.25	148.94

Table 4: Test accuracy (%) of students obtained with different patch sizes. The Patch FID score between OOD data and original data is also reported. Results show that our approach requires smaller patch sizes to handle severe domain discrepancies.

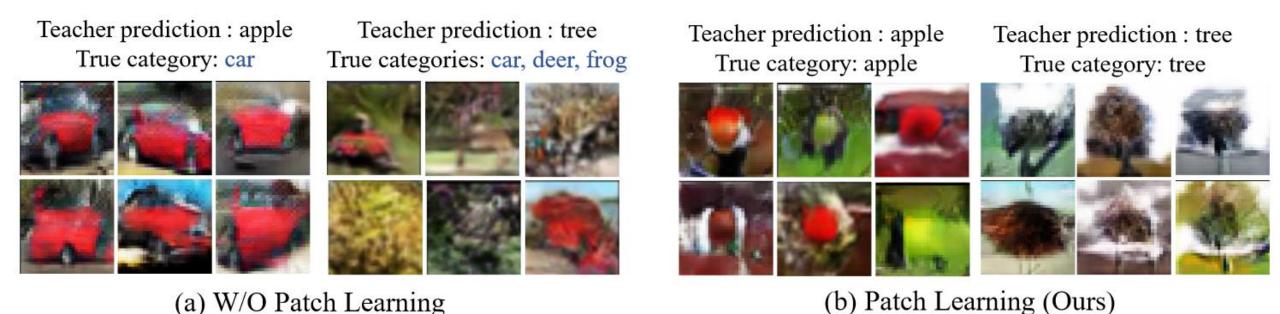


Figure 4: Visualization of synthetic data with and without patch learning. GANs without patch learning will be trapped by OOD data and fails to present correct semantic for different categories (highlighted in blue). In our method, the semantic can be correctly aligned with target domain.

THANKS

Noise-Robust Bidirectional Learning with Dynamic Sample Reweighting

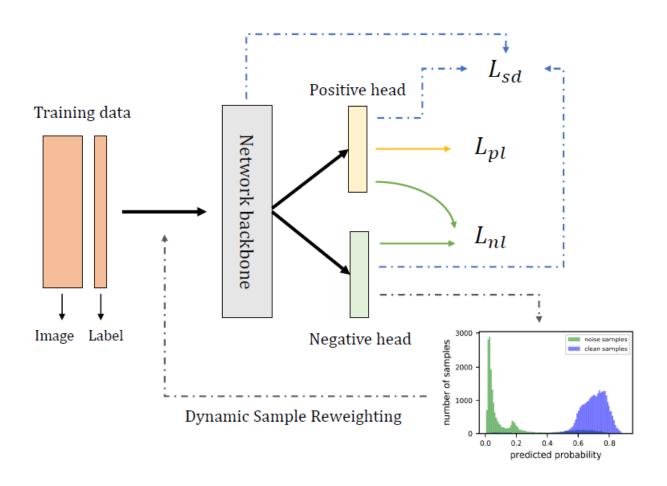


Figure 1: Overview of the BLDR method. We adopt a two-head model, which has a positive head trained in the normal way and a negative head trained with Equation 2. By normalizing the predicted probability of the negative head, we assign a weight to each sample.

$$\mathcal{L}_{pl} = \mathcal{L}_{ce} + \beta \mathcal{L}_{SOP} + \gamma \mathcal{L}_{consistency} + \delta \mathcal{L}_{class}$$

$$\mathcal{L}_{sd} = \sum_{j}^{t} CrossEntropy(p^{j}, \bar{y}) + \alpha \sum_{j}^{t} KL(p^{j}, p_{ens})$$
$$+ \lambda \sum_{j}^{t} \|F_{j} - F_{pl}\|_{2}^{2}$$

$$\mathcal{L}_{nl}(f, \hat{y}) = -\sum_{k=1}^{c} \hat{y}_k \log (1 - p_k)$$

 \hat{y} is a label other than the given label y.

 \hat{y} is a label other than the given label y and the corrected label \tilde{y} for every iteration during training.

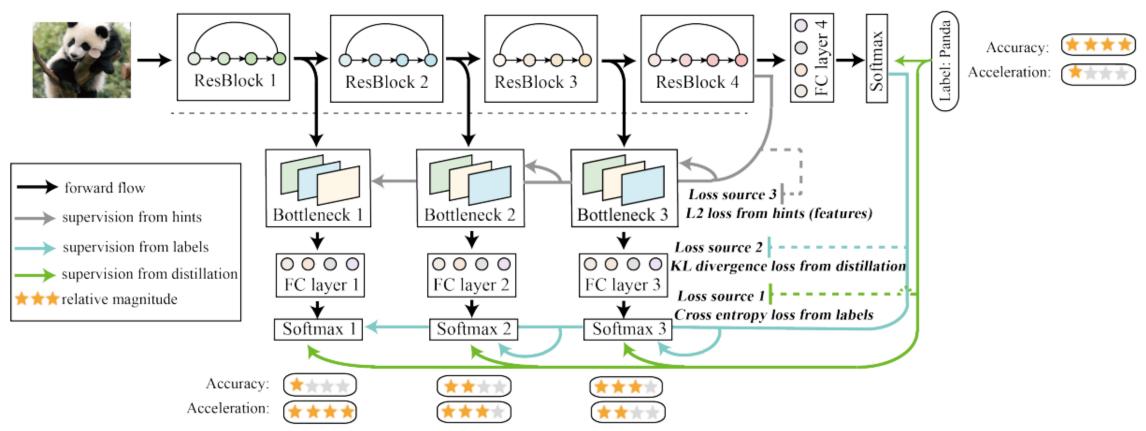


Figure 2. This figure shows the details of a ResNet equipped with proposed self distillation. (i) A ResNet has been divided into four sections according to their depth. (ii) Additional bottleneck and fully connected layers are set after each section, which constitutes multiple classifiers. (iii) All of the classifiers can be utilized independently, with different accuracy and response time. (iv) Each classifier is trained under three kinds of supervision as depicted. (v) Parts under the dash line can be removed in inference.

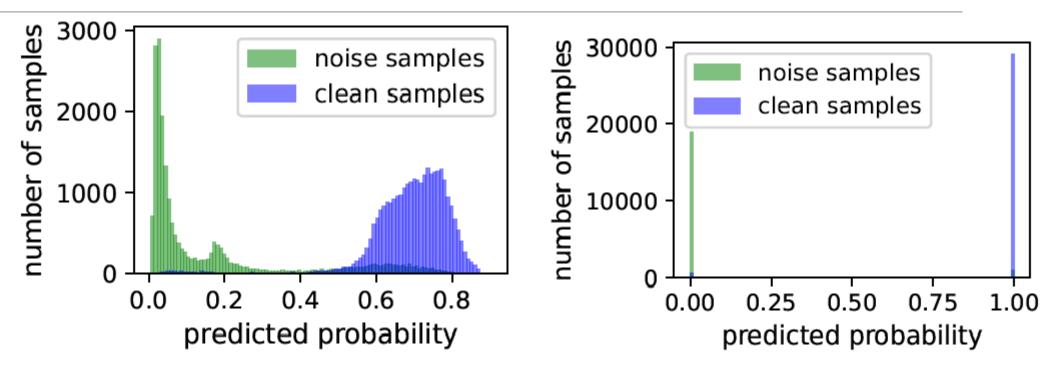


Figure 2: The predicted probability statistics for all CIFAR-10N-Worst training samples on the noisy labels. Figure left only uses bidirectional learning scheme to train the model, while right one combines with the dynamic sample reweighting strategy.

Table 1: Comparison of test accuracies (%) on CIFAR-10N and CIFAR-100N using different methods. The results of the comparison methods are derived from http://noisylabels.com/, and we bold the best case of the comparison methods to visually compare with BLDR. ↑ indicates the boost value of our method, no boost is indicated by "-".

Metho	d	CORES*	PES(semi)	ELR+	Divide-Mix	SOP	BLDR	↑
	Aggre	95.25 ± 0.09	94.66 ± 0.18	94.83 ± 0.10	95.01 ± 0.71	95.61 ± 0.13	96.16	0.55
CIFAR-10N	Rand1	94.45 ± 0.14	95.06 ± 0.15	94.43 ± 0.41	95.16 ± 0.19	95.28 ± 0.13	96.05	0.77
	Worst	91.66 ± 0.09	92.68 ± 0.22	91.09 ± 1.60	92.56 ± 0.42	93.24 ± 0.21	94.53	1.29
CIFAR-10N	Noisy	55.72 ± 0.42	70.36 ± 0.33	66.72 ± 0.07	71.13 ± 0.48	67.81 ± 0.23	_	_

Table 2: The label noise detection performance of our method. A fixed threshold is set for the various noise cases on CIFAR-N.

Da	ataset	C	IFAR-10	CIFAR-100N	
Nois	sy type	type Aggre Rand1 Worst			Noisy
	Precision	81.42	89.21	96.42	_
BLDR	Recall	90.15	93.74	94.19	_
	F1	85.56	91.42	95.29	_

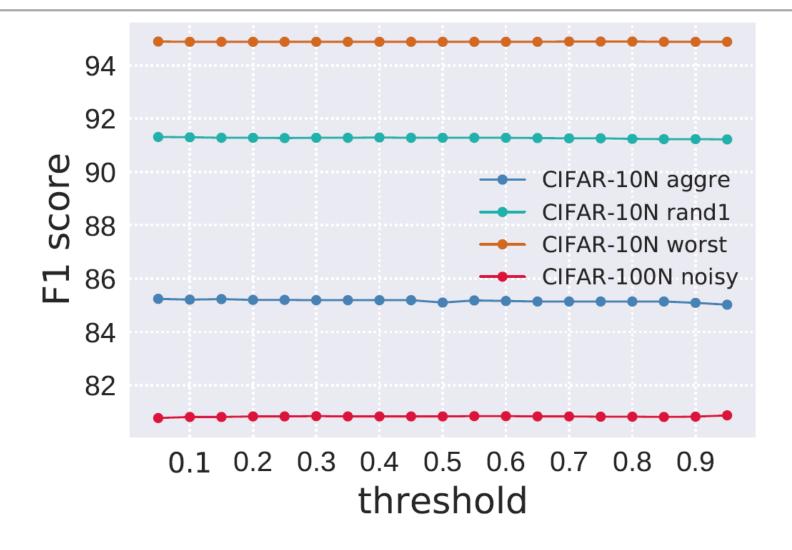


Figure 3: The relationship between the threshold value and the final F1 score obtained among different datasets and different noise cases.