Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction

Yuanhao Cai 1,2,*, Jing Lin 1,2,*, Xiaowan Hu 1,2, Haoqian Wang 1,2,†, Xin Yuan 3, Yulun Zhang 4, Radu Timofte 4, and Luc Van Gool 4 Shenzhen International Graduate School, Tsinghua University, Shenzhen Institute of Future Media Technology, Westlake University, ETH Z⁻⁻urich

MST++: Multi-stage Spectral-wise Transformer For Efficient Spectral Reconstruction

Yuanhao Cai 1,*, Jing Lin 1,*, Zudi Lin 2, Haoqian Wang 1,†, Yulun Zhang 3, Hanspeter Pfister 2, Radu Timofte 3,4, Luc Van Gool 3 Shenzhen International Graduate School, Tsinghua University, Harvard University, CVL, ETH Z⁻⁻urich, 4 CAIDAS, JMU W⁻⁻urzburg

- Analysis
 - > Propose a new method, MST, for HSI reconstruction.
 - Present a novel self-attention, S-MSA, to capture the inter-spectra similarity and dependencies of HSIs.
 - Our MST dramatically outperforms SOTA methods on all scenes in simulation while requiring much cheaper Params and FLOPS.
- Analysis
 - Proposed a novel framework, MST++, for SR.
 - > Validate a series of natural image restoration models on this SR task.
 - Quantitative and qualitative experiments demonstrate that our MST++ dramatically outperforms SOTA methods while requiring much cheaper Params and FLOPS..
- Experiments

Outline

Mask-guided Spectral-wise Transformer (MST)

.Mask-guided Mechanism

$$\mathbf{M}_{s}(x, y, n_{\lambda}) = \mathbf{M}^{*}(x, y + d(\lambda_{n} - \lambda_{c}))$$
$$\mathbf{M}_{s} \in \mathbb{R}^{H \times (W + d(N_{\lambda} - 1)) \times N_{\lambda}}$$
sigmoid activation mapping function
$$\mathbf{I}_{s}' = (\mathbf{W}_{1}\mathbf{M}_{s}) \odot (1 + \delta(f_{dw}(\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{M}_{s})),$$

learnable parameters of the two layers

Mask-guided Mechanism

(a) HSI Characteristic

HSI Features: Spatially Sparse while Spectrally Correlated

(b) CASSI System

To spatially align the mask attention map $egin{array}{c} {f F'} \\ {f H} \end{array}$

$$\mathbf{M}'(x, y, n_{\lambda}) = \mathbf{M}'_{s}(x, y - d(\lambda_{n} - \lambda_{c}), n_{\lambda})$$

 $\mathbf{M}' \longrightarrow \mathbf{M} \in \mathbb{R}^{HW \times C}$ to match the dimensions of V

 $\mathbf{M} = [\mathbf{M}_1, \dots, \mathbf{M}_N].$ $head_j = (\mathbf{M}_j \odot \mathbf{V}_j) \mathbf{A}_j.$

 $\mathbf{X}_{in} \in \mathbb{R}^{H \times W \times C}$ $\mathbf{X} \in \mathbb{R}^{HW \times C}$ $\mathbf{V} \in \mathbb{R}^{HW \times C}$ $\mathbf{K} \in \mathbb{R}^{HW \times C}$ $\mathbf{Q} \in \mathbb{R}^{HW \times C}$ $\mathbf{Q} = \mathbf{X}\mathbf{W}^{\mathbf{Q}}, \mathbf{K} = \mathbf{X}\mathbf{W}^{\mathbf{K}}, \mathbf{V} = \mathbf{X}\mathbf{W}^{\mathbf{V}}$ $\mathbf{Q} = [\mathbf{Q}_{1}, \dots, \mathbf{Q}_{N}], \quad \mathbf{K} = [\mathbf{K}_{1}, \dots, \mathbf{K}_{N}] \quad \mathbf{V} = [\mathbf{V}_{1}, \dots, \mathbf{V}_{N}]$ $d_{h} = \frac{C}{N}$

treats each spectral representation as a token and calculates the self-attention for each headj

analyze the computational complexity

A

$$\begin{split} O(\textbf{S-MSA}) &= \frac{2HWC^2}{N}, \ O(\textbf{G-MSA}) = 2(HW)^2C, \\ O(\textbf{W-MSA}) &= 2(M^2)^2(\frac{HW}{M^2})C = 2M^2HWC, \end{split}$$

The receptive field of our S-MSA is global and not limited to position specific windows.

$$\mathbf{A}_j = \operatorname{softmax}(\sigma_j \mathbf{K}_j^{\mathrm{T}} \mathbf{Q}_j), \ head_j = \mathbf{V}_j \mathbf{A}_j,$$

$$\mathbf{S}\text{-}\mathbf{MSA}(\mathbf{X}) = \big(\operatorname{Concat}_{j=1}^{N}(head_{j})\big)\mathbf{W} + f_{p}(\mathbf{V})$$

$$\mathbf{X}_{out} \in \mathbb{R}^{H \times W \times C}$$

Mask-guided Spectral-wise Transformer (MST)

- MST exploits a conv 3×3 (convolution with kernel size=3) \succ layer to map H into feature X₀
- $\mathbf{X}_i \in \mathbb{R}^{\frac{H}{2^i} imes rac{W}{2^i} imes 2^i C}$ \triangleright
- \succ X2 passes through the bottleneck that consists of N3 MSABs.

- We follow the spirit of U-Net and design a symmetrical structure as the decoder.
- \mathbf{F} $\mathbf{H}' = \mathbf{H} + \mathbf{R}_{\mathbf{u}}$

	TwIS	T [4]	GAP-7	TV [57]	DeSC	T [<mark>30</mark>]	λ -net	t [<mark>39</mark>]	HSSF	• [<mark>49</mark>]	DNU	[<mark>50</mark>]	DIP-H	SI [<mark>38</mark>]	TSA-N	let [36]	DGSM	1P [<mark>20</mark>]	MS	T-S	MS	Г-М	MS	T-L
Scene	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
1	25.16	0.700	26.82	0.754	27.13	0.748	30.10	0.849	31.48	0.858	31.72	0.863	32.68	0.890	32.03	0.892	33.26	0.915	34.71	0.930	35.15	0.937	35.40	0.941
2	23.02	0.604	22.89	0.610	23.04	0.620	28.49	0.805	31.09	0.842	31.13	0.846	27.26	0.833	31.00	0.858	32.09	0.898	34.45	0.925	35.19	0.935	35.87	0.944
3	21.40	0.711	26.31	0.802	26.62	0.818	27.73	0.870	28.96	0.823	29.99	0.845	31.30	0.914	32.25	0.915	33.06	0.925	35.32	0.943	36.26	0.950	36.51	0.953
4	30.19	0.851	30.65	0.852	34.96	0.897	37.01	0.934	34.56	0.902	35.34	0.908	40.54	0.962	39.19	0.953	40.54	0.964	41.50	0.967	42.48	0.973	42.27	0.973
5	21.41	0.635	23.64	0.703	23.94	0.706	26.19	0.817	28.53	0.808	29.03	0.833	29.79	0.900	29.39	0.884	28.86	0.882	31.90	0.933	32.49	0.943	32.77	0.947
6	20.95	0.644	21.85	0.663	22.38	0.683	28.64	0.853	30.83	0.877	30.87	0.887	30.39	0.877	31.44	0.908	33.08	0.937	33.85	0.943	34.28	0.948	34.80	0.955
7	22.20	0.643	23.76	0.688	24.45	0.743	26.47	0.806	28.71	0.824	28.99	0.839	28.18	0.913	30.32	0.878	30.74	0.886	32.69	0.911	33.29	0.921	33.66	0.925
8	21.82	0.650	21.98	0.655	22.03	0.673	26.09	0.831	30.09	0.881	30.13	0.885	29.44	0.874	29.35	0.888	31.55	0.923	31.69	0.933	32.40	0.943	32.67	0.948
9	22.42	0.690	22.63	0.682	24.56	0.732	27.50	0.826	30.43	0.868	31.03	0.876	34.51	0.927	30.01	0.890	31.66	0.911	34.67	0.939	35.35	0.942	35.39	0.949
10	22.67	0.569	23.10	0.584	23.59	0.587	27.13	0.816	28.78	0.842	29.14	0.849	28.51	0.851	29.59	0.874	31.44	0.925	31.82	0.926	32.53	0.935	32.50	0.941
Avg	23.12	0.669	24.36	0.669	25.27	0.721	28.53	0.841	30.35	0.852	30.74	0.863	31.26	0.894	31.46	0.894	32.63	0.917	34.26	0.935	34.94	0.943	35.18	0.948

Method	λ -net [39]	DNU [50]	DIP-HSI [38]	TSA-Net [36]	DGSMP [20]	MST-S	MST-M	MST-L
PSNR	28.53	30.74	31.26	31.46	32.63	34.26	34.94	35.18
SSIM	0.841	0.863	0.894	0.894	0.917	0.935	0.943	0.948
Params (M)	62.64	1.19	33.85	44.25	3.76	0.93	1.50	2.03
FLOPS (G)	117.98	163.48	64.42	110.06	646.65	12.96	18.07	28.15

Experiments

Experiments

471.5 nm

Mask-guided Spectral-wise Transformer (MST++)

Experiments

	N	NTIRE 2022 HSI Dataset - Test						
Method	Params (M)	FLOPS (G)	MRAE	RMSE	PSNR	Username	MRAE	RMSE
HSCNN+ [67]	4.65	304.45	0.3814	0.0588	26.36	pipixia	0.2434	0.0411
HRNet [88]	31.70	163.81	0.3476	0.0550	26.89	uslab	0.2377	0.0391
EDSR [45]	2.42	158.32	0.3277	0.0437	28.29	orange_dog	0.2377	0.0376
AWAN [36]	4.04	270.61	0.2500	0.0367	31.22	askldklasfj	0.2345	0.0361
HDNet [29]	2.66	173.81	0.2048	0.0317	32.13	HSHAJii	0.2308	0.0364
HINet [21]	5.21	31.04	0.2032	0.0303	32.51	ptdoge_hot	0.2107	0.0365
MIRNet [84]	3.75	42.95	0.1890	0.0274	33.29	test_pseudo	0.2036	0.0324
Restormer [83]	15.11	93.77	0.1833	0.0274	33.40	gkdgkd	0.1935	0.0322
MPRNet [85]	3.62	101.59	0.1817	0.0270	33.50	deeppf	0.1767	0.0322
MST-L [13]	2.45	32.07	0.1772	0.0256	33.90	mialgo_ls	0.1247	0.0257
MST++	1.62	23.05	0.1645	0.0248	34.32	MST++*	0.1131	0.0231

