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Central challenge

. require
large and action space a large number of evaluative samples

/

hint sparse or delayed reward

poor sample efficiency
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' Preliminaries .= RATHAXS

* iy [ t —
Markov Decision Process (MDP) o= argmaxBy ., 27T | S0 = 8}
M= (S.AP.R ) = argmaxE,., [V (s)].
— bl b, b, 2 p? FY ﬂ-
Pr=nm ) ) o
model based {ZW _ 1 V=R}+yPV ———>V =( ~P) 'R
Constrained MDP

m* = argmax, E.. [R(7)], s.t|C(7m) < .

transition cost function c(s,a,r,s’) € R

C(W) = Ernn [Zt ’YtC(St,at,Tt+1>3t+1)]
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o= {50800}

Definition 1 (Path set).

Tr, = {7 | so = 8,80¢r) = 8,0x(7) > 0,5¢ # ' for Vt < £(7)}.

Definition 2 (Non-rewarding path set).

Trwan =7 | 7€ Toyars = 0fort < ().

8,8’ .,nr s,s’”

Definition 3 (7-distance from s to s').

Dfi(s,8") = logy (Ermm: rerr, [v7])
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Definition 4 (Shortest path distance from s to s’).

Dy (s,s") = min, DT (s,s’).

Definition 5 (Shortest path policy from s to s’).

7 € I, ={r eIl | D .(s,s') = Dp(s,s)}

s— s’

Definition 6 (Shortest-path constraint). A policy  satisfies S,
the shortest-path (SP) constraint if m € 1I°F, where I1°F = Xﬁ?}?ﬁ ﬁﬁﬁ&ﬁj‘ﬁ]
pati (SF) / HI A IR %5t (s, s7) 5 b

7 | Forall s,s’" € T ., it holds m € TI2Y, ,}. h e
! . e AR AN IE
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Theorem 1. For any MDP, an optimal policy 7™ satisfies
the shortest-path constraint: ™ € II°F.

difficulty: requires a distance predictor Dy, (s, s’).

Relaxation: k-shortest-path Constraint

a binary decision problem: k-reachability

is the state s’ reachable from s within k steps?
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Definition 7 (k-shortest-path constraint). A policy 7 satis-
fies the k-shortest-path constraint if 1 € 1Y, where

I, = {m |Forall s,s' € T§
it holds € II."

s—s’ }

FIE ) k 2 ATIETC 2R ft, L Z0E s R ) SR 4R
Lemma 2. For an MDP M, 11,V C ILY if k < m.

T (s,s") <k,

IlI"

Theorem 3. For an MDP M and any k € R, an optimal
policy 7* is a k-shortest-path policy.

Proof. Theorem 1 tells 7* € II°Y. Eq. (3) tells II5? = IT3F
and Lemma 2 tells II3Y < II;Y. Collectively, we have
e 115 = 11F C IIRP. [
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objective of RL with the k-SP constraint IT}"

™ = argmax, E™ [R(7)], st 7€ lIlY

k-SP constraint cost-based form:

Y = {r | C;F(7) = 0}, where
CS () = ) 1[Dau(s,5') < DI (s, 8]

(s,8"€Tg 1, ): D (s,8")<k
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apply the constraint to the on-policy trajectory 7 = (sg, S1, - - -)

with (s, s¢y;) where [t, t+1] represents each segment of 7 with length [:

C.‘EP(W) ~ Erorn [CIEP(T)]
SP t t+1—1 7y
Cr (1) = Z(t,t):t:go,zgk T (Hj:t Irj = 0]) [ D (e, s¢41) < Dy (St St+1)]

t+1—1
< Z(t,z):tzo,zgk v (Hj:t Ilr; = 0]) [ Dne(st, 8141) < K]

& CF ()
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it 1s sufficient to consider only the cases [ = k

Then, we simplify C$F(7) as

~SP —
Cr (1) = S YT Dy (54, 8041) < K] [T5 I[r; = 0]

t—1

= >Vt = KL Dy (St 8t) < k] [[,—;_j Lr; = 0].

Finally, the per-time step cost ¢; 1s given as:

t—1

ct =1[t > k] - T [Due(se—k,50) < k- | I[r; =0,

j=t—k
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feeding only the current time-step observation performs better than stacking the previous k-steps

Lagrange multiplier method to convert the objective

. L . i o
min max L(A,0) = min max D {Zt v (re — Acy)

Practical Implementation of the Cost Function.

ct ~Rnety_1(St—k—At, S¢) - H I [Tj = 0] Lrnet = — log (Rnetx—1(Sanc, 5+))

— log (1 — Rnetj.—i (Sane; 3—
It >k + At). g ( k—1(Sanc, 5-))
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Algorithm 1 Sampling the triplet data from an episode for RNet training

Require: Hyperparameters: k& € N, Positive bias AT € N, Negative bias A~ € N
1: Imitialize t,,. < O.

2: Initialize Sye = 0, S.. =0, S_ = 0.
3: while t,,. <71 do

Sanc = Sanc U {Stm.}-

t, = Uniform(te + 1, tane + k).

t_ = Uniform(ty,e +k + A7, T).

S_|_ — S+ U {St+}-

S =85 _U{s }.

9:  tane = Uniform(t; + 1,4, + A™).

10: end while

11: Return Sype, 51,5

o 3 O L b
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Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Unconstrained Constrained k-shortest-path (k-SP) constraint (k=2)
,,«---- A *-'P\ A Path Sub—paths k-SP?
,‘:__, }, “‘ t=0~2
e — — SP —True
"f A = RNet— S
MDP - 3.( 4& % & R .,(
.: ----- ¢ B ‘.- B r#0— NA
------------------------------------------------- 1:1~3
P . SN k-SP ) . . Path Sub-paths k-SP?
o “@_ constraint [ Nom
Roll _»x -, R ) Ty t= 0~2. ' &HRNetﬂi on
out (A . ° ,“ . @ . A .‘ ® -SP
Tree : o O N : “ ¥ . ® pFalse
« : :
B--® B @ B ? .‘\.;—»F{Net—» SP
: - : v v t=1~3 N ;
Initial state: @ Rewarding state: Non-rewarding state: @ Allowed transition:--> Path:—> RNet:[RNet| AND: ®




: HERERALS| @
Experiment oo

(a) (b) © (d) (e)
Figure 2. An example observation of (a) FourRooms-11x11, (b) GoalLarge in DeepMind Lab, (c) the maze layout (not available to the
agent) of GoalLarge, (d) Montezuma’s Revenge in Atari, and (e) FetchPush-vI in Fetch.

1.00 FourRooms-7x7 1.00 FourRooms-11x11 1.00 KeyDoor-7x7 1.00 KeyDoor-11x11
— SPRL /N“"’
E0.75 E0.75 E0.75 E0.75 — EJ(-)GrId /.wsﬂ'
2 0.501 2 0.50 2 0.50 2050 — Eco
g g g g
0.25/ 0.25/ 0.25 0.25{ — 1M 5%;
0.00, 0.2 0.4 0.005 1 2 999025 05 075 1 %% 2 4

steps (Millions) steps (Millions) steps (Millions) steps (Millions)
Figure 3. Progress of average episode reward on MliniGrid tasks. We report the mean (solid curve) and standard error (shadowed area) o
the performance over six random seeds.
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GoalSmall ' ObjectMany 60 GoallLarge

SPRL
GT-Grid
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steps (Millions) steps (Millions) steps (Millions)
Figure 4. Progress of average episode reward on DeepMind Lab tasks. We report the mean (solid curve) and standard error (shadowed
area) of the performance over four random seeds.

(a) Random (b) GT-UCB (c) SPRL (d) SPRL+Reward

Figure 8. Transition count maps for baselines and SPRL: (a), (b), and (c¢) are in a reward-free while (d) is in a reward-aware setting.
In reward-free settings (a-c), we show rewarding states in light green only for the visualization, but the agent does not receive rewards
from the environment. The location of the agent’s initial state (orange) and rewarding states (dark green) are fixed. The episode length 1s
limited to 500 steps.
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_,Irajectory space reduction
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Figure 7. (Left) 7x7 Tabular four-rooms domain with initial agent
location (red) and the goal location (green). (Right) The trajec-
tory space reduction ratio (%) before and after constraining the
trajectory space for various k£ and At with k£-SP constraint. Even
a small &k can greatly reduce the trajectory space with a reasonable
tolerance Af.




