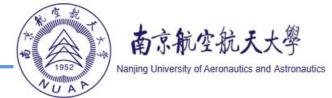


Nanjing University of Aeronautics and Astronautics

Self Supervision to Distillation for Long-Tailed Visual Recognition

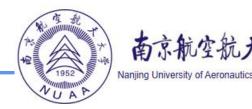

Tianhao LiLimin WangGangshan WuState Key Laboratory for Novel Software Technology, Nanjing University, China

ICCV 2021

DECOUPLING REPRESENTATION AND CLASSIFIER FOR LONG-TAILED RECOGNITION

Bingyi Kang^{1,2}, Saining Xie¹, Marcus Rohrbach¹, Zhicheng Yan¹, Albert Gordo¹, Jiashi Feng², Yannis Kalantidis¹ ¹Facebook AI, ²National University of Singapore kang@u.nus.edu, {s9xie,mrf,zyan3,agordo,yannisk}@fb.com,elefjia@nus.edu.sg

Rebalance the classifier:


- Classifier Re-training (cRT)
 Re-train the classifier with class balanced sampling.
- τ -normalized classifier (τ -normalized)
 Adjusting the classifier weight norms.

$$\widetilde{w_i} = \frac{w_i}{||w_i||^{\tau}},$$

• Learnable weight scaling (LWS) Learning f_i on the training set.

$$\widetilde{w_i} = f_i * w_i$$
, where $f_i = \frac{1}{||w_i||^{\tau}}$.

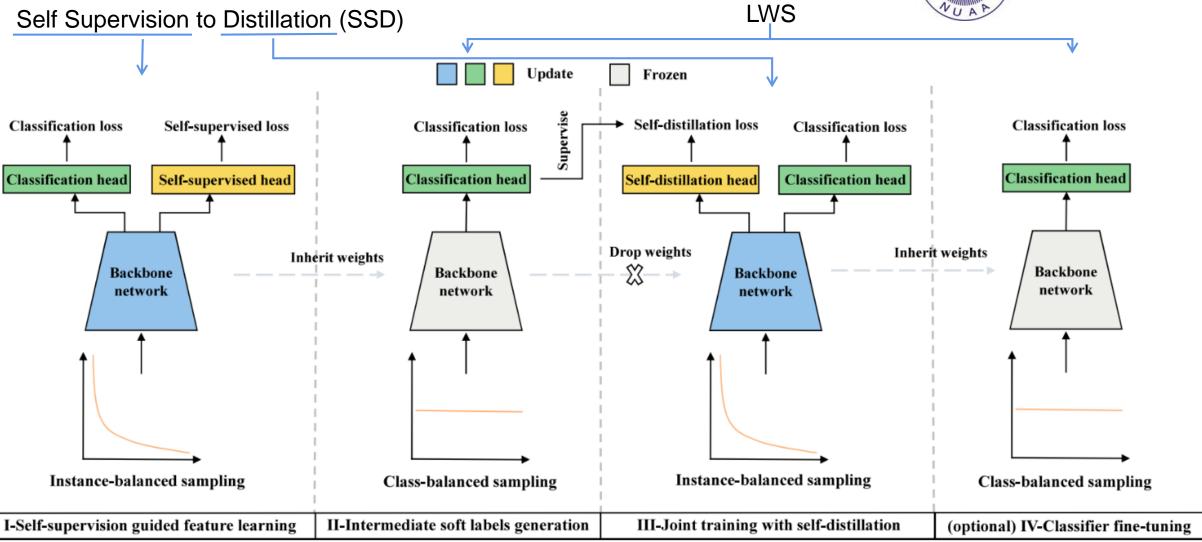
Introducton

Self Supervision to Distillation for Long-Tailed Visual Recognition (SSD):

Motivation:

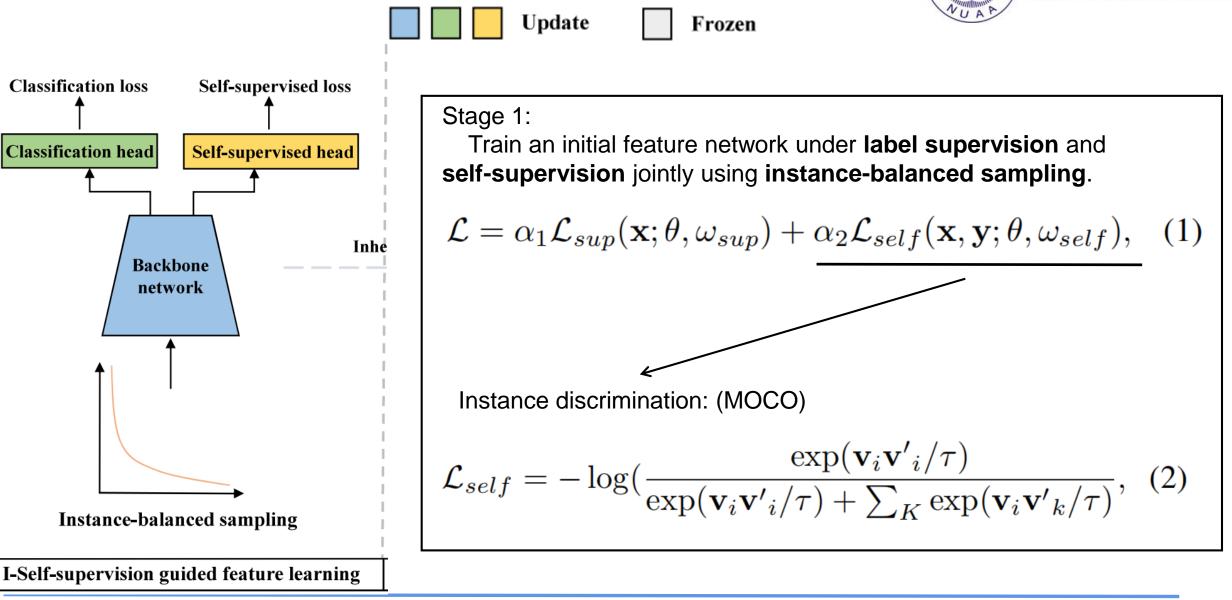
The recent methods are incapable of capturing tail class information in the feature learning stage.

Method:

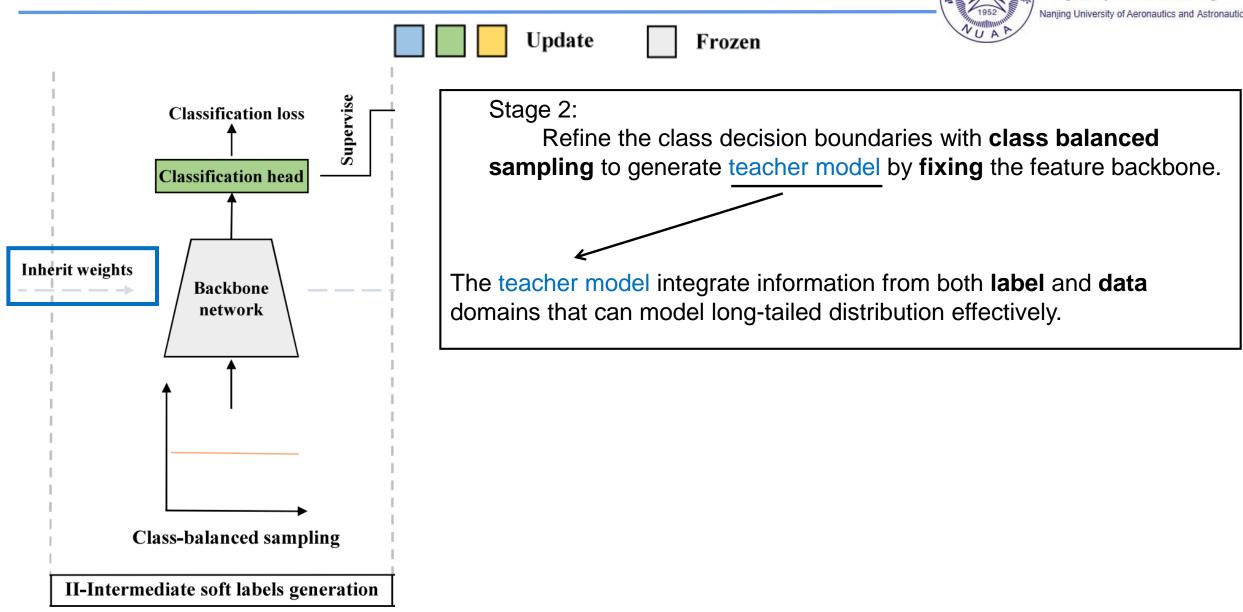

In this paper, we show that **soft label** can serve as a powerful solution to incorporate label correlation into a multi-stage training scheme for long-tailed recognition.

How to generate and use soft label?

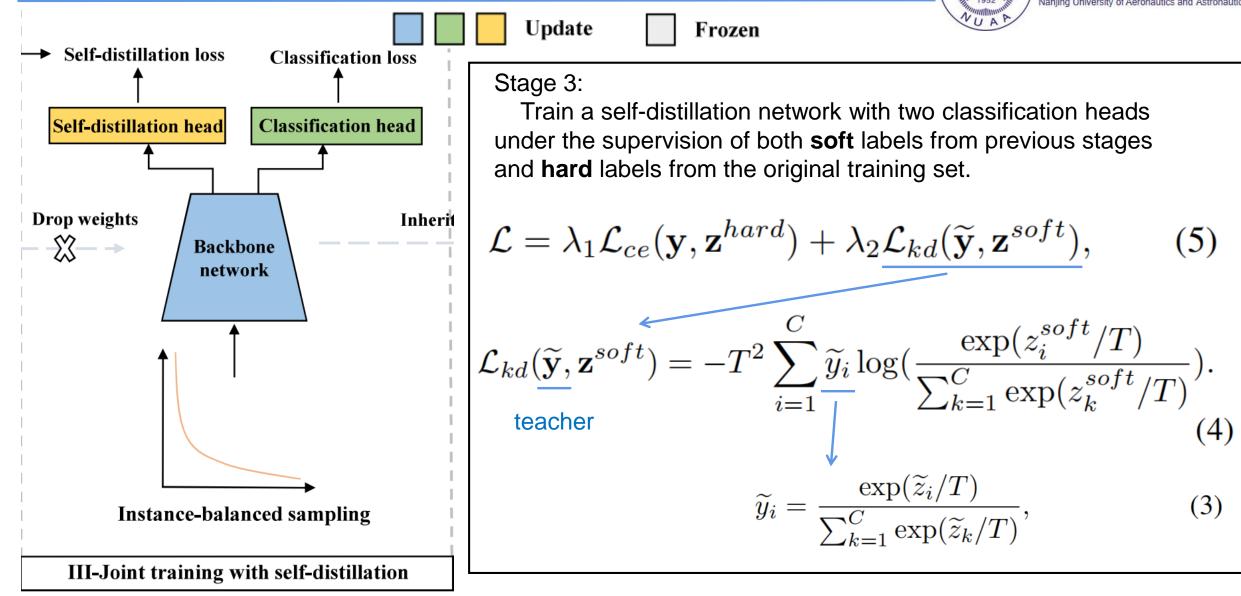
Framework



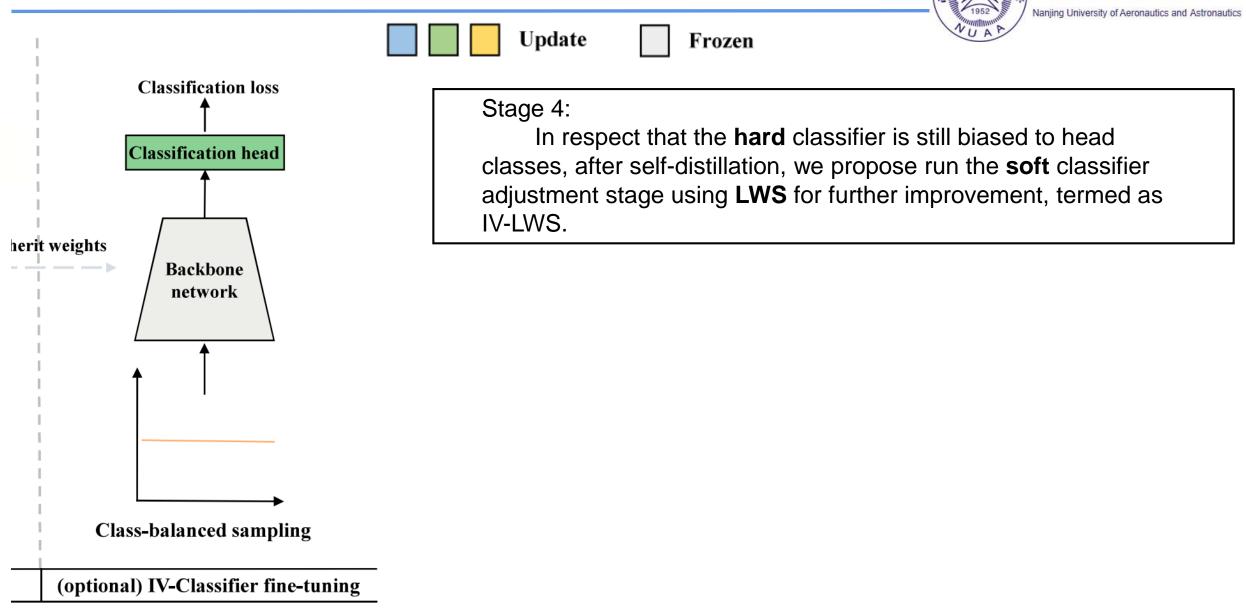
Anjing University of Aeronautics and Astronautics



I-Self-supervision guided feature learning

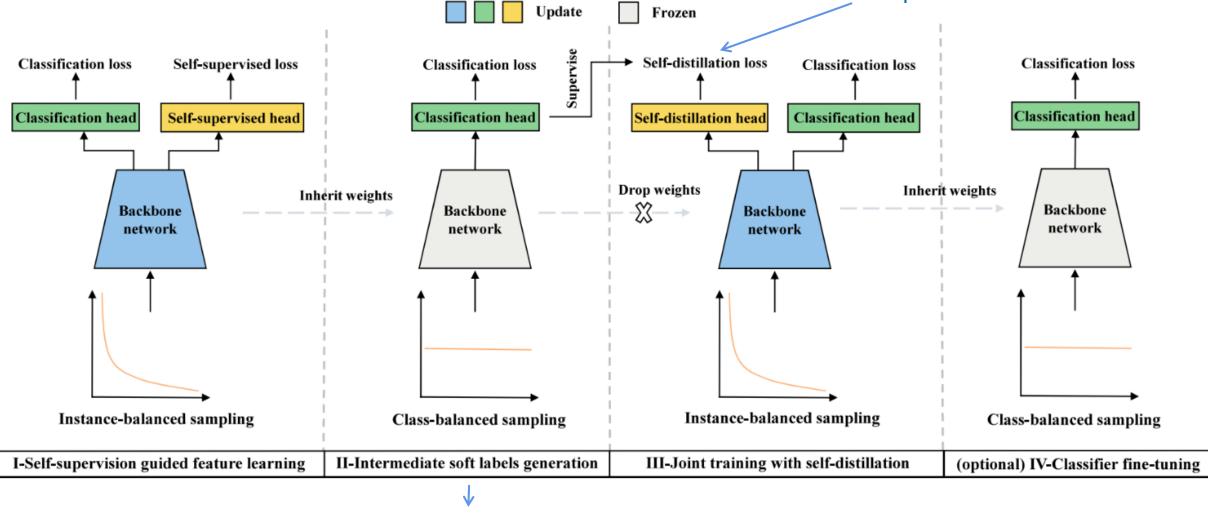


II-Intermediate soft labels generation.



III-Joint training with self-distillation.

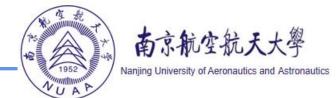
IV-Classifier fine-tuning



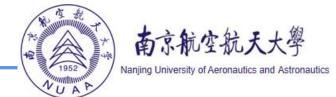
Framework

Teacher model provides the distilled label.

Fine-tune under the class-balanced setting to generate **teacher** model.

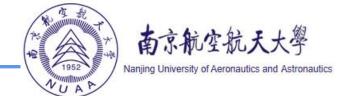

• The effectiveness of the stage I (Self-supervision guided feature learning).

Methods	$1.5 \times$	Ι	II	III-hard (test)	III-soft (test)	IV-LWS	Many	Medium	Few	Overall
CE							66.9	38.0	8.1	45.1
CL	\checkmark						67.9	39.5	9.5	46.3
LWS							61.1	48.0	31.5	50.7
	\checkmark						63.4 ⁺¹	^{.9%} 48.6 ⁺ 3	^{.3%} 32.3 †	^{1.6%} 52.1 ^{+2.6%}
	\checkmark	\checkmark					69.8 ^µ	42.8	11.04	48.9
	\checkmark	\checkmark	\checkmark				64.9	51.1	34.0	54.1
Our SSD	\checkmark		\checkmark			\checkmark	66.0	50.8	34.2	54.4
Our SSD	\checkmark	\checkmark	\checkmark	\checkmark			71.1	46.1	15.6	51.6
	\checkmark	\checkmark	\checkmark		\checkmark		67.1	52.8	33.3	55.7
	\checkmark	\checkmark	\checkmark			\checkmark	66.8	53.1	35.4	56.0


• The effectiveness of the **stage II** (Fine-tune under the class-balanced setting to generate teacher model).

Methods	$1.5 \times$	Ι	II	III-hard (test)	III-soft (test)	IV-LWS	Many	Medium	Few	Overall
CE							66.9	38.0	8.1	45.1
CE	\checkmark						67.9	39.5	9.5	46.3
LWS							61.1	48.0	31.5	50.7
LWS	\checkmark						63.4	48.6	32.3	52.1
	\checkmark	\checkmark					69.8	42.8	11.0	48.9
	\checkmark	\checkmark	\checkmark				64.9	51.1	34.0	54.1
017 SCD	\checkmark		\checkmark			\checkmark	66.0	50.8	34.2	54.4
Our SSD	\checkmark	\checkmark	\checkmark	\checkmark			71.1	46.1	15.6	51.6
	\checkmark	\checkmark	\checkmark		\checkmark		67.1	52.8	33.3	55.7
	\checkmark	\checkmark	\checkmark			\checkmark	66.8	53.1	35.4	56.0

• The effectiveness of the stage III (Joint training with self-distillation).


Methods	$1.5 \times$	Ι	II	III-hard (test)	III-soft (test)	IV-LWS	Many	Medium	Few	Overall
CE							66.9	38.0	8.1	45.1
CE	\checkmark					,	67.9	39.5	9.5	46.3
LWS						;	61.1	48.0	31.5	50.7
LWS	\checkmark					,	63.4	48.6	32.3	52.1
	\checkmark	\checkmark				·;	69.8	42.8	11.0	48.9
	\checkmark	\checkmark	\checkmark				64.9	51.1	34.0	54.1
0	\checkmark		\checkmark			\checkmark	66.0	50.8	34.2	54.4
Our SSD	\checkmark	\checkmark	\checkmark	\checkmark		,	71.1	46.1	15.6	51.6 +1.6
	\checkmark	\checkmark	\checkmark		\checkmark	,	67.1	52.8	33.3	55.7
	\checkmark	\checkmark	\checkmark			\checkmark	66.8	53.1	35.4	56.0

• The effectiveness of the stage IV (Classifier fine-tuning).

Methods	$1.5 \times$	Ι	II	III-hard (test)	III-soft (test)	IV-LWS	Many	Medium	Few	Overall
CE							66.9	38.0	8.1	45.1
CE	\checkmark						67.9	39.5	9.5	46.3
LWS							61.1	48.0	31.5	50.7
LWS	\checkmark						63.4	48.6	32.3	52.1
	\checkmark	\checkmark					69.8	42.8	11.0	48.9
	\checkmark	\checkmark	\checkmark				64.9	51.1	34.0	54.1
Our SSD	\checkmark		\checkmark			\checkmark	66.0	50.8	34.2	54.4
Our SSD	\checkmark	\checkmark	\checkmark	\checkmark			71.1	46.1	15.6	51.6
	\checkmark	\checkmark	\checkmark		\checkmark		67.1	52.8	33.3	55.7
	\checkmark	\checkmark	\checkmark			\checkmark	66.8	53.1	35.4	56.0

Ablation study on distillation

• Study on different self-distillation strategies

(1) **Coupled** self-distillation which is the conventional way of knowledge distillation and trains **a single classifier** using **both hard and soft** labels;

(2) **Single** self-distillation, which only use **soft** labels to train the classifier;

(3) Our train two classifiers using hard and soft labels separately.

Methods	Many	Medium	Few	Overall
Plain	67.9	39.5	9.5	46.3
Teacher model	64.9	51.1	34.0	54.1
Coupled	68.6	49.1	23.8	53.2
Single	67.4	52.0	31.3	55.1
Our III-hard	71.1	46.1	15.6	51.6 +0.6%
Our III-soft	67.1	52.8	33.3	55.7

Table 5. Top-1 accuracy of different self-distillation strategies on the test set of ImageNet-LT.

Hard labels might be able to provide comple mentary knowledge for feature learning.

Experiments

 Unlike conventional knowledge distillation that uses temperature to smooth the label distribution of a single image, we consider taking it to flatten the data distribution of the entire dataset by suppressing the frequency of head classes.

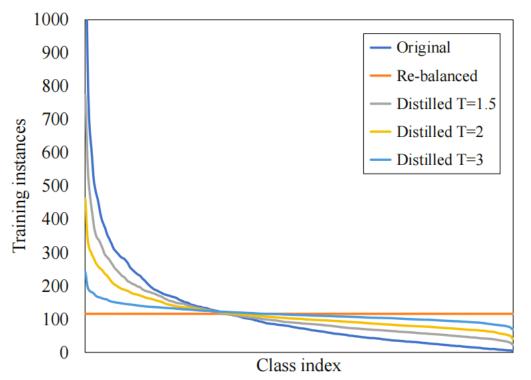


Figure 5. Visualization for different training strategy on ImageNet-LT dataset. *Original, Re-balanced* and *Distilled* denote distribution for original long-tailed data, after class-balanced sampling and distilled label.

Experiments

X	AT A	and and
12 Million	A	T Y
	1952	A Martin
V	VUA	A

Methods	Many	Medium	Few	Overall
Cross Entropy	65.9	37.5	7.7	44.4
OLTR [28]	-	-	-	46.3
NCM [20]	56.6	45.3	28.1	47.3
cRT [20]	61.8	46.2	27.4	49.6
LWS [20]	60.2	47.2	30.3	49.9
De-confound [35]	62.7	48.8	31.6	51.8
cRT*	62.6	46.9	27.9	50.3
LWS*	61.1	48.0	31.5	50.7
SSD (ours)	64.2 (+3.1)	50.8 (+2.8)	34.5 (+3.0)	53.8 (+3.1)
cRT*‡	64.2	47.7	27.8	51.3
LWS*‡	63.4	48.6	32.3	52.1
SSD (ours)‡	66.8 (+3.4)	53.1 (+4.5)	35.4 (+3.1)	56.0 (+3.9)

Table 1. Top-1 accuracy on ImageNet-LT dataset. Comparison to the state-of-the-art methods with ResNeXt-50 as backbone. We report absolute improvements against LWS with the same hyper-parameters. * indicates our reproduced results with the released code. Results marked with \ddagger are trained with $1.5 \times$ scheduler.

Methods	Imb	Imbalance factor				
wiethous	100	50	10			
Cross Entropy (CE)*	39.1	44.0	55.8			
Focal [27]	38.4	44.3	55.8			
LDAM-DRW [2]	42.0	46.6	58.7			
LWS* [20]	42.3	46.0	58.1			
CE-DRW [48]	41.5	45.3	58.2			
CE-DRS [48]	41.6	45.5	58.1			
BBN [48]	42.6	47.0	59.1			
M2m [23]	43.5	-	57.6			
LFME [41]	43.8	-	-			
Domain Adaption [19]	44.1	49.1	58.0			
De-confound [35]	44.1	50.3	59.6			
SSD (ours)	46.0	50.5	62.3			

Table 2. Top-1 accuracy on CIFAR100-LT dataset with the imbalance factor of 100, 50 and 10. We compare with state-of-the-art methods with <u>ResNet-32</u> as backbone network. * indicates our reproduced results with the released code.

Experiments

Methods	Top-1	Acc.
Wiethous	1×	$2 \times$
CB-Focal [2]	61.1	-
LDAM [2]	64.6	-
LDAM+DRW [2]	68.0	-
LDAM+DRW [†] [2]	64.6	66.1
τ -norm‡ [20]	65.6	69.3
cRT‡ [20]	65.2	68.5
LWS‡ [20]	65.9	69.5
CE-DRW [48]	63.7	-
CE-DRS [48]	63.6	-
BBN [48]	66.3	69.6
FSA [6]	65.9	-
LWS‡* [20]	66.6	69.5
SSD (ours)‡	69.3	71.5

Table 3. Top-1 accuracy on iNaturalist 2018 dataset with $1 \times$ and $2 \times$ schedulers and comparison to state-of-the-art methods with ResNet-50 as backbone. * indicates our reproduced results. Results marked by † are cited from [48]. $2 \times$ means using 200 epochs training scheduler for methods marked by ‡ and 180 epochs for other methods.

