EIUHAIS ST B8R LH

FPAttern Recognition ancd Neural Computing

ParN.C

Deep Neural Networks Motivated by
Partial Differential Equations

Lars Ruthotto!® and Eldad Haber?3

Journal of Mathematical Imaging and Vision (2020) 62:352-364

EIUHAIS ST B8R LH

HAttern Recognition ancd Newral Computing

PFarN_C

Reversible Architectures for Arbitrarily
Deep Residual Neural Networks

Bo Chang,*!* Lili Meng,*!* Eldad Haber,'
Lars Ruthotto,>* David Begert,” Elliot Holtham?

lUniveraity of British Columbia, Vancouver, Canada. (bchang @stat.ubc.ca, menglili@cs.ubc.ca, haber@math.ubc.ca)
2Xtract Technologies Inc., Vancouver, Canada. (david@xtract.ai, elliot@xtract.ai)
SEmory University, Atlanta, USA. (Iruthotto@emory.edu). This author is supported in part by NSF DMS 1522599.
* Authors contributed equally.

AAAI-18

I RevNet

Y, X, - e Y,

X, (4
s> >V () X <O Y.

Figure 2: (a) the forward, and (b) the reverse computations of a residual block, as in Equation 8.

(a) %

Y1 = x1 + F(x2) o =y2 — G(y1)
y2 = x2 + G(y1) x1 =y — F(x2)

I Hamiltonian Reversible Block

Convolution K4 Convolution KT
Bis FI:LU
Hiu Elfas

Cnnvolutiun KqT CanvuIItion Kz

P

Figure 1: The Hamiltonian Reversible Block. First, the in-
put feature map is equally channel-wise split to Y ; and Z;.
Then the operations described in Eq. 10 are performed, re-
sultingin Y ;1 and Z; . Finally, Y and Z;, are con-
catenated as the output of the block.

Yj_|_1 Y + thlﬁ(Kj1Zj + bjl)a

Zji1 = Zj — hKjo(Kj2Y 41 +bjo).

I Hamiltonian Reversible Neural Network

Hamiltonian Reversible Unit 3
(0 0} 0}
]Cj itj g I

~
uiie et

Hamiltonian Reversible Unit | Hamiltonian Reversible Unit 2

RGN | R

Figure 2: The Hamiltonian Reversible Neural Network. It 1s the simple stacking of several Hamiltonian reversible blocks as

shown 1n Fig. 1 and pooling layer.

Cat

Pooling

Pooling
v
| Zero-padding |
v

Pooling
¥
| Zero-padding |
v

I Finite difference

. Il" — l' ~
continuous u(z) = lim ~ o
. 1 .
discrete u; = E(UHI —u;),1=0,1,2,...,. N -1

1 .
higher derivatives) = ﬁ(qu +u;1 —2u;),i=0,1,2,.... N -1

I Residual Networks and Differential Equations

FO.Y) =K, 0o (N(Kl(e(”)Y, 9%) | v

*
- Yo=Y H
~ ¥
- 3x3 conv, 64
- Yju=Y;+F@OY,Y;), for j=0,1,...,N—1 m.:Q

|
911;1‘1}11 ~S(WYn(0) + Bwp)e, ,C) + RO, W, p)
n 2

I Convolutional ResNets and PDEs

Y1 =Y; +F0OY,Y))

1
H u; = E(ui—l—l - uz)

0:Y(0,t) =F@0((),Y()), fort € (0, T]
Y(@,0) =Y.

? PDE
intferpretation

FO.Y)=K,0%)o (N(Kl(o“))Y, 0<2>))

I Convolutional ResNets and PDEs

consider a one-dimensional convolution of a feature with one channel

y=1[y&x1), ..., yx)]' with x; = (i - %) h.

Ki(@)y=1[010,03]xy

2 —(&[12 +@[101]+‘83[12—1])

B 91 Yi-
B3 6“'3
V

K1(8) = B,(8) + B2(8)d; + B3(6)d. > Onyi= T

—_

B 1] = | —
I

§|._ o §|>_

I Convolutional ResNets and PDEs

i
2 3 2
2)) & ALS
E ~
2/ 952 § %
) IL’lm‘f:\ ™ NANJING UNIVERSITY OF AHRIINAIITE S ANN ASTRUINATITE S

| | , 1
KiO)y =[0:02031%y y= [y, .otl’ with x = (i =5)
9 6, 0 0 - 0 0 0 _
g 6o 63 0 --- 0 0 0 \ ﬂw{%)—ﬂgm(%]—ﬁgm(%ﬁ].
007 O O3 - 0 0 0 /
. y
0 0 0 6, 6y 05
\ 0 0 0 0 6 6
h 3h 5h, . 3h. . a(P)-xB) | 2(P)+=2(}) - 22(F)
E]I{E) T 521(?] T 53[{.'(?] = ,J-‘]_I[_?} + .jE oh -‘33 hg

B1(0)y+ B1(6)0,v+ B3(0);y

I Convolutional ResNets and PDEs

Ki(0) = B,(0) + B2(6)d, + B3(8)0,
+ B4(0)07 + Bs5(0)9; + B6(8)0x 0,
+ B7(0)920y + Bg(8)d.07 + Bo(8)9202.

proceed the same way with K2,
when the number of input and output channels is larger than one, K1 andK2 lead

to a system of coupled partial differential operators.

FO.Y) =K, 0%)o (/\/(K1 @)Y, 0<2>))

stability 1Y@, T)—Y®, T)lr <M|Yo— Yolr

3Y(©,1) =F@(), Y1), fort € (0, T] JYF — K2 (0) diag(a’(KI (Q)Y)) Kl (0) assume N (Y) =Y

Y(4,0) =Y.

I Deep Neural Networks Motivated by PDEs

to obtain a stable network, choosing K2 = -K1T
Foym(,Y) = —-K(@)' 0 W(K(@)Y, 0))
1. Parabolic CNN

0:Y(0,1) =Feym(0(2), Y (7)), fort e (0,T].

— VY ifo(X)=x,N)=Yand K(t) =V,
(heat equation)

new normalization 1
i — da operator A € R n/c xn computes the
layer' motivated by MV (y) N dlag Y sum over all ¢ channels for each pixel

total variation(TV) AT\/(Ay)2 + €
denoising

I Deep Neural Networks Motivated by PDEs

2. Hyperbolic CNNs (Reversibility) ' = %(ml + Uiy~ 20;),i=0,1,2,..,N — 1

2.1 Hamiltonian CNNs

9, Y(t) = Fsym(@V (1), Z(1)), Y(0) =Yy
0 Z(t) = —Feym(@P (1), Y1), Z(0) = Zy.

|

Y1 =Y, +8Fym@V), Z)), Zi =71+ 8Fym@® (1)), Yj11)
Zjw1 =2j = 5Faym®P (1)), Y1), Y; =Y — 8Fym®@V (1)), Z)),

2.2 Second-order CNNs

02Y (1) = Foym(8(1), Y (1)),
Y(O) =Yg, 0,Y(O) =0.

l

{Y—l = Yy
Y1 =2Y;,-Y; +5?Fsym(0(tj)an)-

) i AL

NANJING UNIVERSITY OF AHRIINATITE S ANN ASTRUNATITE S

I Architecture
A. STL-10 architecture
connector ResNet connector

. connector connector
opening ResNet ResNet ResNet
s 3 x 3 conv 1 x 1 conv 3 x 3 conv 1 x 1 conv 3 x 3 conv 1 x 1 conv 3 x 3 conv 1 x 1 conv
e —» RelU, tv norm _—; RelU, batchnorm __, RelU, tv noom 3 RelU, batchnorm __, RelU, tv norm 3 RelU, batchnorm __ RelU, tv norm —, RelU, batchnorm
ReL, etchiun = | N i | N5 G-I | Nt o—1 |
3 — 16 channels = St ayerags poo =90 dycrage poo =35, 6 = aVEIIEEIPoo =5, 6= average poo
v 16 channels 16 — 32 channels 32 channels 32 — 64 channels 64 channels 64 — 128 channels 128 channels 128 — 128 channels
JopEels 962 pixels 96% — 482 pixels 48?2 pixels 482 — 242 pixels 242 pixels 242 — 122 pixels 122 pixels 122 — 1 pixel
Hamiltonian Reversible Unit 3

Figure 2: The Hamiltonian Reversible Neural Network. It 1s the simple stacking of several Hamiltonian reversible blocks as

Cat

Pooling

Pooling

Zero-padding

Pooling

Zero-padding

1 x 1 conv

shown 1n Fig. 1 and pooling layer.
1 x 1 conv 3 x 3 conv
RelLU, batchnorm — ReLU, tv norm | RelLU, batchnorm
average pool N =36, =1 average pool
64 — 128 channels 128 channels 128 — 256 channels
8 pixels 8 — 1 pixel

16% — 8% pixels

also contain an opening layer and several connector layers (blue) that

Fig.2 Overview of network architectures for the STL-10 (top row) and
increase the number of channels and reduce the image resolution (Color

CIFAR-10/100 (bottom row) image classification problems. The archi-
tectures consist of ResNet blocks (red) that represent the parabolic, figure online)
Hamiltonian, and second-order dynamics, respectively. The networks

A bt AL S

NANJING UNIVERSITY OF AFRUNAIITE S ANN ASTRUNATITE S

I Experiments

A. Convergence for STL-10 B. Convergence for CIFAR-10 C. Convergence for CIFAR-100

0! 70
> P P e 60l
s 70 |
3 ool 80 1 50l
.§ 50 70 40
2 40 30 - —
o 60 & -~ Hamiltonian CNN
< 30 | 20 Parabolic CNN
20 | | o L o o —Second-Order CNN
20 40 60 80 100 120 140 160 180 ~ 20 40 60 80 100 120 140 160 180 10 80 120 180 220 260 300 340
epochs epochs epochs
Fig. 3 Performance of the training algorithm for the three proposed validation accuracy computed using the remaining images after every
architectures applied to the STL-10 (left), CIFAR-10 (middle) and epoch. In these examples, we did not observe considerable overfitting
CIFAR-100 (right) datasets. We use randomly choose 80% of the train- and note that the weights from the final epoch led to adequate validation

ing images to update the weights using SGD. The plots show the accuracies (Color figure online)

I Experiments

co
-]

|
o

% test accuracy
(o)}
e}

-e- Hamiltonian CNN
Parabolic CNN
——Second-Order CNN

10 20 30 40 50 60 70 80

(@7
o

40 '

% training data (no augmentation)

Fig.4 Improvement of the test accuracy when increasing the number of
training images in the STL-10 dataset (from 10% to 80% in increments
of 10%). We first train the weights of the three proposed architectures
and plot the test accuracy of the final iterate. Here, we do not use any
data augmentation. Expectedly, the generalization improves as more
images are used for all architectures (Color figure online)

NANJING UNIVERSITY OF AHRIINATITE S ANN ASTRUNATITE S

I Experiments

(5] >
%) c)
0 5 T
o} e— -E » o+~ O b0 o O =
s s 53858 2EF
4]
- I
k- 8
5 o
= °
£ b
T L2
N 5
9 5
L~
; |
©
c
§ «—— true class —
wn
1,000 1,500 2,000 2,500 3,000 3,500 4,000
S 0 200 400 600 800
«— number of training images —
Fig.5 Confusion matrices for classifiers obtained using the three pro- the 10 x 10 confusion matrix counts the number of images of class i
posed architectures (row-wise) [or an increasing number of (raining for which the predicted class is j. We use the entire test data set, which

data from the STL-10 dataset (column-wise). The (i, j)th element of contains 800 images per class (Color figure online)

ll Experiments R AKS

Table 1 Summary of numerical results for the STL-10, CIFAR-10, and CIFAR-100 datasets

STL-10 CIFAR-10 CIFAR-100

Number of Test data Number of Test data Number of Test data

weights (M) (8000) accu- weights (M) (10,000) weights (M) (10,000)

racy %(loss) accuracy accuracy
%(loss) %(loss)

Parabolic 1.01 80.9% (0.726) 0.50 90.5% (0.316) 0.65 67.4% (1.185)
Hamiltonian 0.52 80.4% (0.770) 0.26 90.7% (0.334) 0.36 67.1% (1.208)
Second-order 1.01 79.6% (0.770) 0.50 90.6% (0.329) 0.65 66.9% (1.281)
Hamiltonian [9] 1.28 835.5% (n/a) 0.43 92.8% (n/a) 0.44 71.0% (n/a)
Leapfrog [9] 2.44 84.6% (n/a) 0.50 91.9% (n/a) 0.51 69.1% (n/a)
ResNet-110 [25] 1.7 93.4% (n/a) 1.7 74.8% (n/a)
Wide ResNet [51] 0.6 93.2% (n/a) 0.6 69.1% (n/a)

Using the hyperparameters chosen by cross-validation, we train the networks on the entire training data. After training, we compute and report the
classification accuracy and the value of cross-entropy loss (in brackets where reported) for the test data. To this end, we use the weights from the
final epoch of SGD. We also report the number of trainable weights for each network and for comparison state results from the literature achieved
with similarly sized or larger architectures

Thanks

