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Hamiltonian Reversible Block



Hamiltonian Reversible Neural Network
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Residual Networks and Differential Equations



Convolutional ResNets and PDEs

？PDE 
interpretation



Convolutional ResNets and PDEs

consider a one-dimensional convolution of a feature with one channel
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Convolutional ResNets and PDEs

proceed the same way with K2, 
when the number of input and output channels is larger than one, K1 andK2 lead 
to a system of coupled partial differential operators.

stability

assume N (Y) = Y
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to obtain a stable network, choosing K2 = −K1T

1. Parabolic CNN

if σ (x) = x, N (Y) = Y and K(t) = ∇, 
(heat equation)

new normalization 
layer motivated by 
total variation(TV) 
denoising

operator A ∈ R n/c ×n computes the 
sum over all c channels for each pixel



Deep Neural Networks Motivated by PDEs

2. Hyperbolic CNNs (Reversibility)

2.1 Hamiltonian CNNs

2.2 Second-order CNNs



Architecture

a H1-seminorm was used to smooth kernels over time to avoid overfitting.

To enforce stability of the forward propagation, the linear operator K 
should not change drastically in time.
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