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(b) Decoupled Knowledge Distillation (DKD).
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N Effects of TCKD and NCKD

student TCKD NCKD | top-1 A
ResNet32 x4 as the teacher

72.50 -
v v 73.63 +1.13
ResNet8 x4 v 68.63 -3.87
v 7426 +1.76

70.50 -
v v 74.29  +3.79
ShuffleNet-V 1 Y 7052 +0.02
v 7491 +4.41

WRN-40-2 as the teacher

73.26 -
. v v 7496 +1.70
WRN-16-2 v 70.96  -2.30
v 7476  +1.50

70.50 -
. v v 7492 +4.42
ShuffleNet-V 1 Y 7062 4012
v 75.12  +4.62

1. Applying Strong Augmentation
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student TCKD | top-1 A
73.82 -
ResNet§ x4 Voo 7533 4151
77.13 -
ShuffleNet-V 1 Y 7708 +0.85
2. Noisy Labels
noisy ratio | TCKD | top-1
0.1 70.99
' v 7096 -0.03
67.55
0.2 v 68.03 +0.48
0.3 64.62
v 65.26 +0.64

3. Challenging Datasets(e.g., ImageNet)
TCKD | top-1 A

70.71 -

v 71.03

+0.32




J Effects of TCKD and NCKD _aterias| g
KD = TCKD + (1 — p/ )NCKD

The loss weight of well-predicted samples are suppressed by the high confidence of
the teacher.

To verify this, authors rank the training samples according to p{ , and evenly split
them into two sub-sets. For clarity, one sub-set includes samples with top-50% p;
while remaining samples are in the other sub-set. Then they train student networks
with NCKD on each subset to compare the performance gain (while the cross-
entropy loss is still on the whole set).

0-50%  50-100% | top-

v v 74.26
v 74.23
v 73.96
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ResNet32 X4 and ResNet8 X4 are set as the teacher and the student, respectively.
Firstly, they prove that decoupling (1 — p!) and NCKD can bring reasonable performance

gain (73.63% vs. 74.79%) in the first table.
Then, they demonstrate that decoupling weights of NCKD and TCKD could contribute to

further improvements (74.79% vs. 76.32%).
Moreover, the second table indicates that TCKD is indispensable, and the improvements

from TCKD are stable with different a around 1.0.

3 1—p] | 1.0 2.0 4.0 8.0 10.0
top-1 | 73.63 | 7479 7544 7594 7632 76.18
o 0.0 0.2 0.5 1.0 2.0 4.0
top-1 | 7530 75.64 76.12 7632 76.11 7542
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results on the CIFAR-100 validation with teachers and students in the same architectures

teacher ResNet56 ResNet110 ResNet32x4 WRN-40-2 WRN-40-2 VGGI3
distillation 72.34 74.31 79.42 75.61 75.61 74.64
manner student ResNet20  ResNet32 ResNet8 x4  WRN-16-2 WRN-40-1 VGGS
69.06 71.14 72.50 73.26 71.98 70.36
FitNet [ 28] 69.21 71.06 73.50 73.58 72.24 71.02
RKD [27] 69.61 71.82 71.90 73.35 72.22 71.48
features CRD [37] 71.16 73.48 75.51 75.48 74.14 73.94
OFD [10] 70.98 73.23 74.95 75.24 74.33 73.95
ReviewKD [ | ] 71.89 73.89 75.63 76.12 75.09 74.84
KD |[!17] 70.66 73.08 73.33 74.92 73.54 72.98
logits DKD 71.97 74.11 76.32 76.24 74.81 74.68
A +1.31 +1.03 +2.99 +1.32 +1.27 +1.70

Table 6. Results on the CIFAR-100 validation. Teachers and students are in the same architectures. And A represents the performance
improvement over the classical KD. All results are the average over 5 trials.
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results on the CIFAR-100 validation with teachers and students in different architectures

teacher ResNet32 x4 WRN-40-2 VGGI13 ResNet50 ResNet32 x4
distillation 79.42 75.61 74.64 79.34 79.42
manner student ShuffleNet-V1  ShuffleNet-V1  MobileNet-V2  MobileNet-V2  ShuffleNet-V2
70.50 70.50 64.60 64.60 71.82
FitNet [ 2¥] 73.59 73.73 64.14 63.16 73.54
RKD [27] 72.28 72.21 64.52 64.43 73.21
features CRD [3] 75.11 76.05 69.73 69.11 75.65
OFD [ 10] 75.98 75.85 69.48 69.04 76.82
ReviewKD | 1] 77.45 77.14 70.37 69.89 77.78
KD |[!2] 74.07 74.83 67.37 67.35 74.45
logits DKD 76.45 76.70 69.71 70.35 77.07
A +2.38 +1.87 +2.34 +3.00 +2.62

Table 7. Results on the CIFAR-100 validation. Teachers and students are in different architectures. And A represents the performance
improvement over the classical KD. All results are the average over 5 trials.




' Experiments

distillation manner

features logits
teacher student | AT [13] OFD]J[!0] CRDJ[:3] ReviewKD][!] | KD[!2] KD* DKD
top-1 73.31 69.75 70.69 70.81 71.17 71.61 70.66 71.03  71.70
top-5 01.42 89.07 90.01 89.98 90.13 90.51 89.88 90.05 9041

Table 8. Top-1 and top-5S accuracy (%) on the ImageNet validation. We set ResNet-34 as the teacher and ResNet-18 as the student.
KD* represents the result of our implementation. All results are the average over 3 trials.

distillation manner

features logits
teacher student | AT [1?] OFDJ[I0] CRDJ[: ] ReviewKD][I!] | KDJ[!2] KD* DKD
top-1 76.16 68.87 69.56 71.25 71.37 72.56 68.58 70.50 72.05
top-3 02.86 88.76 89.33 90.34 00.41 01.00 88.98 89.80 91.05

Table 9. Top-1 and top-5 accuracy (%) on the ImageNet validation. We set ResNet-5() as the teacher and MobileNet-V2 as the student.
KD* represents the result of our implementation. All results are the average over 3 trials.
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R-101 & R-18 R-101 & R-50 R-50 & MV2
AP APs5o  APr5 AP APso  APr5 AP AP5o  AP7s
teacher 42.04 6248 4588 | 4204 6248 4588 | 40.22 61.02 43381
student 33.26  53.61 35.26 | 37.93 58.84 41.05 | 29.47 48.87 30.90
KD [12] 3397 54.66 36.62 | 38.35 5941 41.71 | 30.13 50.28 31.35
FitNet [27] 34.13  54.16 36.71 | 38.76 59.62 41.80 | 30.20 49.80 31.69
FGFI [35] 35.44 55.51 38.17 | 39.44 60.27 43.04 | 31.16 50.68 32.92
ReviewKD [1] 36.75  56.72 3400 | 40.36 6097 44.08 | 33.71 53.15 36.13
DKD 35.05 56.60 37.54 | 39.25 6090 4273 | 3234 53.77 34.01
DKD+ReviewKD | 37.01 57.53 39.85 | 40.65 61.51 44.44 | 34.35 54.89 36.61

Table 10. Results on MS-COCO based on Faster-RCNN [27]-FPN [19]: AP evaluated on val2017. Teacher-student pairs are ResNet-
101 (R-101) & ResNet-18 (R-18), ResNet-101 & ResNet-50 (R-50) and ResNet-50 & MobileNet-V2 (MV2) respectively. All results are
the average over 3 trials. More details are attached in supplement.
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% top-1 time params
5 74 KD[12] | 7333 11 0
S o RKD[23] | 71.90 25 0
* | gkp® FitNet FitNet 28] | 7350 14 168K
OFD[10] | 7495 19 869K
CRD [37] 7551 41 12.3M
7 ReviewKD [1] | 75.63 26  1.8M
DKD 7632 11 0
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Figure 2. Training time (per batch) vs. accuracy on CIFAR-100.
We set ResNet32 x4 as the teacher and ResNet8 x4 as the student.
The table shows the number of extra parameters for each method.




' Experiments-Big Teachers

W-28-2 W-40-2 W-16-4 W-28-4
75.45 75.61 77.51 78.60
KD 75.37 74.92 75.779 75.04
DKD 75.92 76.24 76.00 76.45

Table 11. Results on CIFAR-100. We set WRN-16-2 as the student
and WRN series networks as teachers.

VGGI3 WRN-16-4 ResNet50

teacher

teacher |-, 4 77.51 79.34
KD | 74.93 75.79 75.36
DKD | 75.45 76.00 76.60

Table 12. Results on CIFAR-100. We set WRN-16-2 as the student
and networks from different series as teachers.
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baseline KD FitNet CRD ReviewKD DKD
STL-10| 69.7 709 703 71.6 72 .4 72.9
TI 337 339 335 356 36.6 37.1

Table 13. Comparison with previous methods on transferring
features from CIFAR-100 to STL-10 and Tiny-ImageNet (TI).
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Figure 3. t-SNE of features learned by KD (left) and DKD (right).
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Figure 4. Difference of correlation matrices of student and teacher
logits. Obviously, DKD (right) leads to a smaller difference (more
similar prediction) than KD (left).
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