
Borui Zhao¹ Quan Cui² Renjie Song¹ Yiyu Qiu^{1,3} Jiajun Liang¹ ¹MEGVII Technology ²Waseda University ³Tsinghua University

CVPR 2022

$$\text{KD} = \text{TCKD} + (1 - p_t')\text{NCKD}$$

Effects of TCKD and NCKD

student	TCKD	NCKD	top-1	Δ
Res	$SNet32 \times 4$	as the teac	her	
			72.50	-
ResNet8×4	\checkmark	\checkmark	73.63	+1.13
Keshelo×4	\checkmark		68.63	-3.87
		\checkmark	74.26	+1.76
			70.50	-
ShuffleNet-V1	\checkmark	\checkmark	74.29	+3.79
Shuffenet-vi	\checkmark		70.52	+0.02
		\checkmark	74.91	+4.41
W	RN-40-2 a	s the teach	ner	
			73.26	-
WRN-16-2	\checkmark	\checkmark	74.96	+1.70
WKIN-10-2	\checkmark		70.96	-2.30
		\checkmark	74.76	+1.50
			70.50	-
ShuffleNet-V1	\checkmark	\checkmark	74.92	+4.42
Shumenet-v I	\checkmark		70.62	+0.12
		\checkmark	75.12	+4.62

1. Applying Strong Augmentation

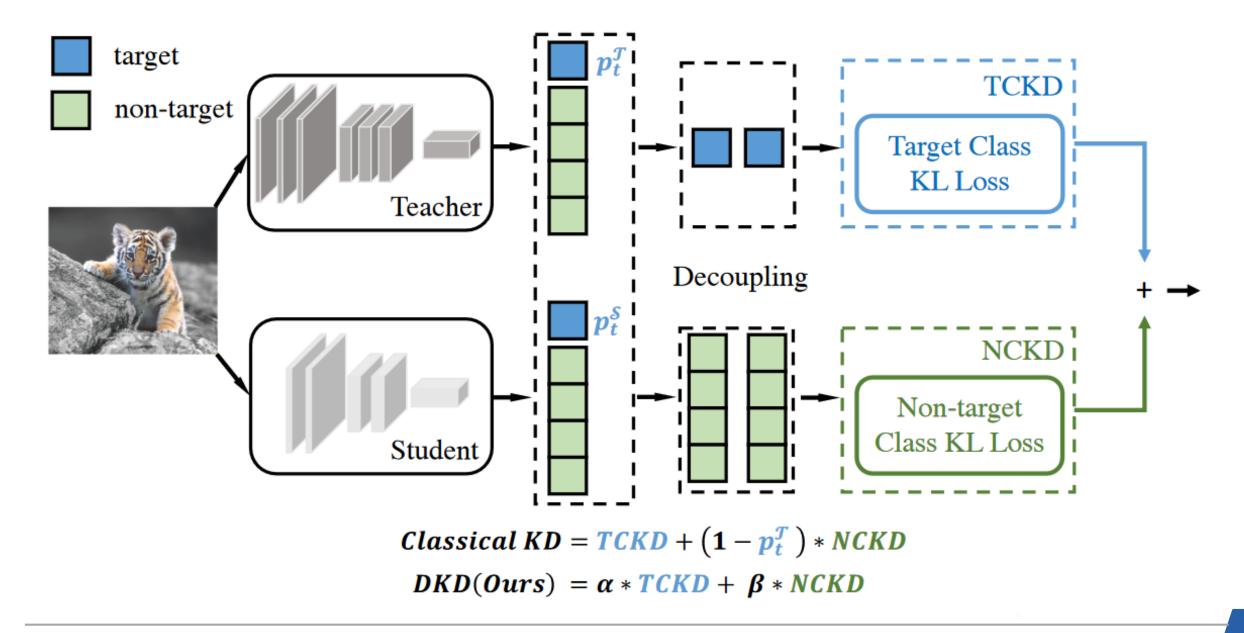
student	TCKD	top-1	Δ
ResNet8×4		73.82	-
Keshelo ×4	\checkmark	75.33	+1.51
ShuffleNet-V1		77.13	-
Shumenet-v I	\checkmark	77.98	+0.85

2. Noisy Labels

noisy ratio	TCKD	top-1	Δ
0.1		70.99	-
0.1	\checkmark	70.96	-0.03
0.2		67.55	-
0.2	\checkmark	68.03	+0.48
0.3		64.62	-
0.5	\checkmark	65.26	+0.64

3. Challenging Datasets(e.g., ImageNet)

TCKD	top-1	Δ
	70.71	-
\checkmark	71.03	+0.32


$$\mathbf{KD} = \mathbf{TCKD} + (1 - p_t^{\mathcal{T}})\mathbf{NCKD}$$

The loss weight of well-predicted samples are suppressed by the high confidence of the teacher.

To verify this, authors rank the training samples according to p_t^T , and evenly split them into two sub-sets. For clarity, one sub-set includes samples with top-50% p_t^T while remaining samples are in the other sub-set. Then they train student networks with NCKD on each subset to compare the performance gain (while the crossentropy loss is still on the whole set).

0-50%	50-100%	top-1
\checkmark	\checkmark	74.26
\checkmark		74.23
	\checkmark	73.96

Multi-Label Knowledge Distillation

if
$$i \in \boldsymbol{y}, p_i = \frac{\sigma(z_i)}{\sum_{k=1}^C \sigma(z_i)} = \frac{\sigma(z_i)}{\sum_{k \in \boldsymbol{y}} \sigma(z_k)} \frac{\sum_{k \in \boldsymbol{y}} \sigma(z_k)}{\sum_{k=1}^C \sigma(z_k)} = \hat{p}_{t,i} p_t$$

if $i \notin \boldsymbol{y}, p_i = \frac{\sigma(z_i)}{\sum_{k=1}^C \sigma(z_i)} = \frac{\sigma(z_i)}{\sum_{k \notin \boldsymbol{y}} \sigma(z_k)} \frac{\sum_{k \notin \boldsymbol{y}} \sigma(z_k)}{\sum_{k=1}^C \sigma(z_k)} = \hat{p}_{\backslash t,i} p_{\backslash t}$

$$\begin{aligned} D_{KL}(\boldsymbol{p}^{T}||\boldsymbol{p}^{S}) &= \sum_{i=1}^{N} p_{i}^{T} \log \frac{p_{i}^{T}}{p_{i}^{S}} \\ &= \sum_{i \in \boldsymbol{y}} p_{i}^{T} \log \frac{p_{i}^{T}}{p_{i}^{S}} + \sum_{i \notin \boldsymbol{y}} p_{i}^{T} \log \frac{p_{i}^{T}}{p_{i}^{S}} \\ &= p_{t}^{T} \log \frac{p_{t}^{T}}{p_{t}^{S}} + p_{\backslash t}^{T} \log \frac{p_{\backslash t}^{T}}{p_{\backslash t}^{S}} + p_{t}^{T} \sum_{i \in \boldsymbol{y}} \hat{p}_{t,i}^{T} \log \frac{\hat{p}_{\downarrow,i}^{T}}{\hat{p}_{\downarrow,i}^{S}} + p_{\backslash t}^{T} \log \frac{\hat{p}_{\backslash t,i}^{T}}{\hat{p}_{\backslash t,i}^{S}} \end{aligned}$$

ResNet32×4 and ResNet8×4 are set as the teacher and the student, respectively. Firstly, they prove that decoupling $(1 - p_t^T)$ and NCKD can bring reasonable performance gain (73.63% vs. 74.79%) in the first table.

Then, they demonstrate that decoupling weights of NCKD and TCKD could contribute to further improvements (74.79% vs. 76.32%).

Moreover, the second table indicates that TCKD is indispensable, and the improvements from TCKD are stable with different α around 1.0.

	$ 1 - p_t^{\mathcal{T}} $					
top-1	73.63	74.79	75.44	75.94	76.32	76.18
α	0.0	0.2	0.5	1.0	2.0	4.0
top-1	75.30	75.64	76.12	76.32	76.11	75.42

results on the CIFAR-100 validation with teachers and students in the same architectures

distillation	teacher	ResNet56 72.34	ResNet110 74.31	ResNet32×4 79.42	WRN-40-2 75.61	WRN-40-2 75.61	VGG13 74.64
manner	student	ResNet20	ResNet32	ResNet8×4	WRN-16-2	WRN-40-1	VGG8
	student	69.06	71.14	72.50	73.26	71.98	70.36
	FitNet [28]	69.21	71.06	73.50	73.58	72.24	71.02
	RKD [23]	69.61	71.82	71.90	73.35	72.22	71.48
features	CRD [33]	71.16	73.48	75.51	75.48	74.14	73.94
	OFD [10]	70.98	73.23	74.95	75.24	74.33	73.95
	ReviewKD [1]	71.89	73.89	75.63	76.12	75.09	74.84
	KD [12]	70.66	73.08	73.33	74.92	73.54	72.98
logits	DKD	71.97	74.11	76.32	76.24	74.81	74.68
	Δ	+1.31	+1.03	+2.99	+1.32	+1.27	+1.70

Table 6. **Results on the CIFAR-100 validation.** Teachers and students are in the **same** architectures. And Δ represents the performance improvement over the classical KD. All results are the average over 5 trials.

results on the CIFAR-100 validation with teachers and students in different architectures

	teacher	ResNet32×4	WRN-40-2	VGG13	ResNet50	ResNet32×4
distillation	teacher	79.42	75.61	74.64	79.34	79.42
manner	student	ShuffleNet-V1	ShuffleNet-V1	MobileNet-V2	MobileNet-V2	ShuffleNet-V2
	student	70.50	70.50	64.60	64.60	71.82
	FitNet [28]	73.59	73.73	64.14	63.16	73.54
	RKD [23]	72.28	72.21	64.52	64.43	73.21
features	CRD [33]	75.11	76.05	69.73	69.11	75.65
	OFD [10]	75.98	75.85	69.48	69.04	76.82
	ReviewKD [1]	77.45	77.14	70.37	69.89	77.78
	KD [12]	74.07	74.83	67.37	67.35	74.45
logits	DKD	76.45	76.70	69.71	70.35	77.07
	Δ	+2.38	+1.87	+2.34	+3.00	+2.62

Table 7. Results on the CIFAR-100 validation. Teachers and students are in different architectures. And Δ represents the performance improvement over the classical KD. All results are the average over 5 trials.

 dis	tillation ma	anner		1	features			logits	
	teacher	student	AT [43]	OFD [10]	CRD [33]	ReviewKD [1]	KD [12]	KD*	DKD
top-1	73.31	69.75	70.69	70.81	71.17	71.61	70.66	71.03	71.70
top-5	91.42	89.07	90.01	89.98	90.13	90.51	89.88	90.05	90.41

Table 8. Top-1 and top-5 accuracy (%) on the ImageNet validation. We set ResNet-34 as the teacher and ResNet-18 as the student. KD* represents the result of our implementation. All results are the average over 3 trials.

dis	tillation ma	anner		t	features			logits	
	teacher	student	AT [43]	OFD [10]	CRD [33]	ReviewKD [1]	KD [12]	KD*	DKD
top-1	76.16	68.87	69.56	71.25	71.37	72.56	68.58	70.50	72.05
top-5	92.86	88.76	89.33	90.34	90.41	91.00	88.98	89.80	91.05

Table 9. Top-1 and top-5 accuracy (%) on the ImageNet validation. We set ResNet-50 as the teacher and MobileNet-V2 as the student. KD* represents the result of our implementation. All results are the average over 3 trials.

	R-	R-101 & R-18		R-101 & R-50			R-50 & MV2		
	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅
teacher	42.04	62.48	45.88	42.04	62.48	45.88	40.22	61.02	43.81
student	33.26	53.61	35.26	37.93	58.84	41.05	29.47	48.87	30.90
KD [12]	33.97	54.66	36.62	38.35	59.41	41.71	30.13	50.28	31.35
FitNet [28]	34.13	54.16	36.71	38.76	59.62	41.80	30.20	49.80	31.69
FGFI [38]	35.44	55.51	38.17	39.44	60.27	43.04	31.16	50.68	32.92
ReviewKD [1]	36.75	56.72	34.00	40.36	60.97	44.08	33.71	53.15	36.13
DKD	35.05	56.60	37.54	39.25	60.90	42.73	32.34	53.77	34.01
DKD+ReviewKD	37.01	57.53	39.85	40.65	61.51	44.44	34.35	54.89	36.61

Table 10. **Results on MS-COCO based on Faster-RCNN [27]-FPN [19]**: AP evaluated on val2017. Teacher-student pairs are ResNet-101 (R-101) & ResNet-18 (R-18), ResNet-101 & ResNet-50 (R-50) and ResNet-50 & MobileNet-V2 (MV2) respectively. All results are the average over 3 trials. More details are attached in supplement.

Experiments-Training Efficiency

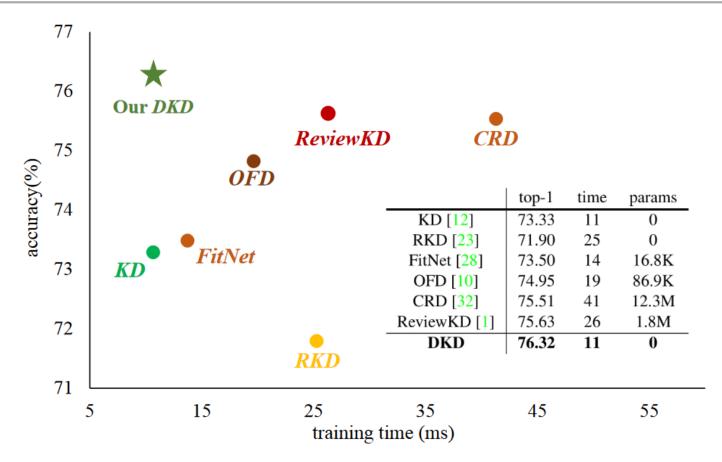


Figure 2. Training time (per batch) *vs.* accuracy on CIFAR-100. We set ResNet 32×4 as the teacher and ResNet 8×4 as the student. The table shows the number of extra parameters for each method.

teacher	W-28-2	W-40-2	W-16-4	W-28-4
	75.45	75.61	77.51	78.60
KD	75.37	74.92	75.79	75.04
KD	15.51	14.92	13.19	/3.04

Table 11. Results on CIFAR-100. We set WRN-16-2 as the student and WRN series networks as teachers.

teacher	VGG13	WRN-16-4	ResNet50	
teacher	74.64	77.51	79.34	
KD	74.93	75.79	75.36	
DKD	75.45	76.00	76.60	

Table 12. Results on CIFAR-100. We set WRN-16-2 as the student and networks from different series as teachers.

						ReviewKD		
	STL-10	69.7	70.9	70.3	71.6	72.4	72.9	
	TI	33.7	33.9	33.5	35.6	36.6	37.1	
Table 12 Commonian with more mothed an transformin								

Table 13. Comparison with previous methods on transferring features from CIFAR-100 to STL-10 and Tiny-ImageNet (TI).

Experiments-Visualizations

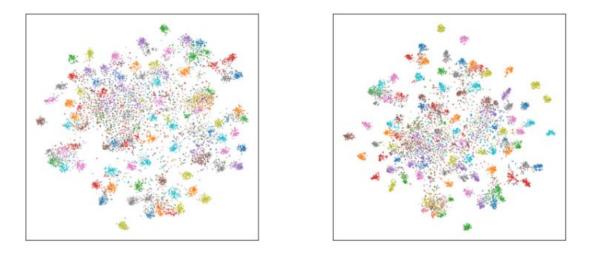


Figure 3. t-SNE of features learned by KD (left) and DKD (right).

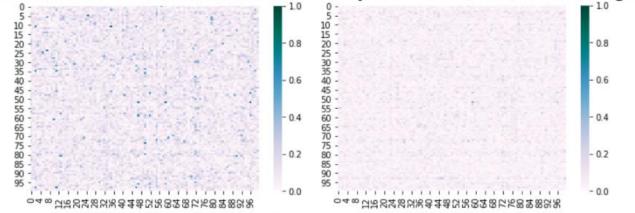


Figure 4. Difference of correlation matrices of student and teacher logits. Obviously, DKD (right) leads to a smaller difference (more similar prediction) than KD (left).