

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation

Shiqi Yang¹, Yaxing Wang^{1,2}*, Joost van de Weijer¹, Luis Herranz¹, Shangling Jui³
¹ Computer Vision Center, Universitat Autonoma de Barcelona, Barcelona, Spain
² PCALab, Nanjing University of Science and Technology, China
³ Huawei Kirin Solution, Shanghai, China
{syang, yaxing, joost, lherranz}@cvc.uab.es, jui.shangling@huawei.com

NIPS-2021

Background

✓ Goal: Achieving good performance on the target domain.

□ Source-Free Domain Adaptation(SFDA)

Due to data privacy or intellectual property, we can solve the UDA problems by only utilizing the model trained by source domain.

Motivation

Previous methods ignore the intrinsic neighborhood structure of the target data in feature space which can be very valuable to tackle SFDA.

• Observation:

Even though the target data might have shifted in the feature space (due to the covariance shift), target data of the same class is still expected to form a cluster in the embedding space.

reciprocal nearest neighbors (RNN)

A well-established way to assess the structure of points in high-dimensional spaces is by considering the nearest neighbors of points.

Methods-NRC

• The author try to assign different weights to the supervision from nearest neighbors and aims to achieves source-free domain adaptation by encouraging reciprocal neighbors to concord in their label prediction.

□ Objective

$$\mathcal{L} = -\frac{1}{n_t} \sum_{x_i \in \mathcal{D}_t} \sum_{x_j \in \text{Neigh}(x_i)} \frac{D_{sim}(p_i, p_j)}{D_{dis}(x_i, x_j)}$$

reciprocal nearest neighbors(RNN)

$$j \in \mathcal{N}_K^i \wedge i \in \mathcal{N}_M^j$$

Methods-NRC

reciprocal nearest neighbors(RNN)

$$j \in \mathcal{N}_K^i \wedge i \in \mathcal{N}_M^j$$

affinity value

$$A_{i,j} = \begin{cases} 1 & \text{if } j \in \mathcal{N}_K^i \land i \in \mathcal{N}_M^j \\ r & \text{otherwise. } 0.1 \end{cases} = \frac{1}{D_{dis}}$$

Features memory bank and prediction scores memory bank

$$\mathcal{F} = [\boldsymbol{z}_1, \boldsymbol{z}_2, \dots, \boldsymbol{z}_{n_t}] \qquad \mathcal{S} = [p_1, p_2, \dots, p_{n_t}]$$

D Consistent prediction

$$\mathcal{L}_{\mathcal{N}} = -rac{1}{n_t}\sum_i \sum_{k\in\mathcal{N}_K^i} A_{ik}\mathcal{S}_k^ op p_i \;\;$$
 k is the index of the k-th nearest neighbors of z_i

□ self-regularization

• To further reduce the potential impact of noisy neighbors in N_K, which belong to the different class but still are RNN

$$\mathcal{L}_{self} = -\frac{1}{n_t} \sum_{i}^{n_t} \mathcal{S}_i^\top p_i$$

prediction diversity loss

$$\mathcal{L}_{div} = \sum_{c=1}^{C} \text{KL}(\bar{p}_{c} || q_{c}), \text{ with } \bar{p}_{c} = \frac{1}{n_{t}} \sum_{i} p_{i}^{(c)}, \text{ and } q_{\{c=1,..,C\}} = \frac{1}{C}$$

Methods-NRC

 \square expanded neighbors of feature z_i

 $E_M(\boldsymbol{z}_i) = \mathcal{N}_M(\boldsymbol{z}_j) \; \forall j \in \mathcal{N}_K(\boldsymbol{z}_i)$

• The author directly assign a small affinity value r to those expanded neighbors, since they are further than nearest neighbors

$$\mathcal{L}_E = -\frac{1}{n_t} \sum_i \sum_{k \in \mathcal{N}_K^i} \sum_{m \in E_M^k} r \mathcal{S}_m^\top p_i$$

Final Loss

$$\mathcal{L} = \mathcal{L}_{div} + \mathcal{L}_{\mathcal{N}} + \mathcal{L}_E + \mathcal{L}_{self}$$

Algorithm 1 Neighborhood Reciprocity Clustering for Source-free Domain Adaptation	
Require: \mathcal{D}_s (only for source model training), \mathcal{D}_t	
1: Pre-train model on \mathcal{D}_s	
2: Build feature bank \mathcal{F} and score bank \mathcal{S} for \mathcal{D}_t	
3: while Adaptation do	
4: Sample batch \mathcal{T} from \mathcal{D}_t	
5: Update \mathcal{F} and \mathcal{S} corresponding to current batch \mathcal{T}	
6: Retrieve nearest neighbors \mathcal{N} for each of \mathcal{T}	
7: Compute affinity value A	⊳ Eq.5
8: Retrieve expanded neighborhoods E for each of \mathcal{N}	
9: Compute loss and update the model	⊳ Eq. 9
10: end while	

Experiments

Method	SF	A→D	$A \rightarrow W$	$D \rightarrow W$	$W \rightarrow D$	$D \rightarrow A$	W→A	Avg
MCD [35]	×	92.2	88.6	98.5	100.0	69.5	69.7	86.5
CDAN [24]	×	92.9	94.1	98.6	100.0	71.0	69.3	87.7
MDD [59]	X	90.4	90.4	98.7	99.9	75.0	73.7	88.0
BNM [4]	X	90.3	91.5	98.5	100.0	70.9	71.6	87.1
DMRL [49]	X	93.4	90.8	99.0	100.0	73.0	71.2	87.9
BDG [53]	×	93.6	93.6	99.0	100.0	73.2	72.0	88.5
MCC [15]	X	95.6	95.4	98.6	100.0	72.6	73.9	89.4
SRDC [42]	X	95.8	95.7	99.2	100.0	76.7	77.1	90.8
RWOT [51]	X	94.5	95.1	99.5	100.0	77.5	77.9	90.8
RSDA-MSTN [10]	×	95.8	96.1	99.3	100.0	77.4	78.9	91.1
SHOT [21]		94.0	90.1	98.4	99.9	74.7	74.3	88.6
3C-GAN [20]	 ✓ 	92.7	93.7	98.5	99.8	75.3	77.8	89.6
NRC	1	96.0	90.8	99.0	100.0	75.3	75.0	89.4

Table 1: Accuracies (%) on Office-31 for ResNet50-based methods.

Table 2: Accuracies (%) on Office-Home for ResNet50-based methods.

Method	SF	Ar→C	lAr→Pr	Ar → Rw	Cl→Aı	:Cl→Pr	Cl→Rw	/Pr→Aı	Pr→Cl	Pr→Rw	rRw→Ar	Rw→Cl	$Rw \rightarrow P$	r Avg
MCD [35]	X	48.9	68.3	74.6	61.3	67.6	68.8	57.0	47.1	75.1	69.1	52.2	79.6	64.1
CDAN [24]	X	50.7	70.6	76.0	57.6	70.0	70.0	57.4	50.9	77.3	70.9	56.7	81.6	65.8
SAFN [52]	X	52.0	71.7	76.3	64.2	69.9	71.9	63.7	51.4	77.1	70.9	57.1	81.5	67.3
Symnets [58]	X	47.7	72.9	78.5	64.2	71.3	74.2	64.2	48.8	79.5	74.5	52.6	82.7	67.6
MDD [59]	X	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
TADA [47]	×	53.1	72.3	77.2	59.1	71.2	72.1	59.7	53.1	78.4	72.4	60.0	82.9	67.6
BNM [4]	X	52.3	73.9	80.0	63.3	72.9	74.9	61.7	49.5	79.7	70.5	53.6	82.2	67.9
BDG [53]	×	51.5	73.4	78.7	65.3	71.5	73.7	65.1	49.7	81.1	74.6	55.1	84.8	68.7
SRDC [42]	X	52.3	76.3	81.0	69.5	76.2	78.0	68.7	53.8	81.7	76.3	57.1	85.0	71.3
RSDA-MSTN [10] X	53.2	77.7	81.3	66.4	74.0	76.5	67.9	53.0	82.0	75.8	57.8	85.4	70.9
SHOT [21]	1	57.1	78.1	81.5	68.0	78.2	78.1	67.4	54.9	82.2	73.3	58.8	84.3	71.8
NRC	1	57.7	80.3	82.0	68.1	79.8	78.6	65.3	56.4	83.0	71.0	58.6	85.6	72.2

D Office-31

□ Office-Home

Experiments

VisDa

Table 3: Accuracies (%) on VisDA-C (Synthesis \rightarrow Real) for ResNet101-based methods.

Method	SF	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Per-class
ADR [34]	X	94.2	48.5	84.0	72.9	90.1	74.2	92.6	72.5	80.8	61.8	82.2	28.8	73.5
CDAN [24]	X	85.2	66.9	83.0	50.8	84.2	74.9	88.1	74.5	83.4	76.0	81.9	38.0	73.9
CDAN+BSP [2]	X	92.4	61.0	81.0	57.5	89.0	80.6	90.1	77.0	84.2	77.9	82.1	38.4	75.9
SAFN [52]	X	93.6	61.3	84.1	70.6	94.1	79.0	91.8	79.6	89.9	55.6	89.0	24.4	76.1
SWD [19]	X	90.8	82.5	81.7	70.5	91.7	69.5	86.3	77.5	87.4	63.6	85.6	29.2	76.4
MDD [59]	X	-	-	-	-	-	-	-	-	-	-	-	-	74.6
DMRL [49]	X	-	-	-	-	-	-	-	-	-	-	-	-	75.5
MCC [15]	X	88.7	80.3	80.5	71.5	90.1	93.2	85.0	71.6	89.4	73.8	85.0	36.9	78.8
STAR [26]	X	95.0	84.0	84.6	73.0	91.6	91.8	85.9	78.4	94.4	84.7	87.0	42.2	82.7
RWOT [51]	X	95.1	80.3	83.7	90.0	92.4	68.0	92.5	82.2	87.9	78.4	90.4	68.2	84.0
3C-GAN [20]	✓	94.8	73.4	68.8	74.8	93.1	95.4	88.6	84.7	89.1	84.7	83.5	48.1	81.6
SHOT [21]	1	94.3	88.5	80.1	57.3	93.1	94.9	80.7	80.3	91.5	89.1	86.3	58.2	82.9
NRC	1	96.8	91.3	82.4	62.4	96.2	95.9	86.1	80.6	94.8	94.1	90.4	59.7	85.9

D 3D point cloud dataset

Table 4: Accuracies (%) on PointDA-10. The results except ours are from PointDAN [30].

	SF	Model→Shape	e Model→Scan	Shape→Mode	l Shape→Scar	n Scan→Model	Scan→Shap	be Avg
MMD [25]	X	57.5	27.9	40.7	26.7	47.3	54.8	42.5
DANN [6]	X	58.7	29.4	42.3	30.5	48.1	56.7	44.2
ADDA [44]	X	61.0	30.5	40.4	29.3	48.9	51.1	43.5
MCD [35]	X	62.0	31.0	41.4	31.3	46.8	59.3	45.3
PointDAN [30]	×	64.2	33.0	47.6	33.9	49.1	64.1	48.7
Source-only		43.1	17.3	40.0	15.0	33.9	47.1	32.7
NRC	1	64.8	25.8	59.8	26.9	70.1	68.1	52.6

Table 5: Ablation study of different modules on Office-Home (left) and VisDA (middle), comparison between using expanded neighbors and larger nearest neighbors (right).

\mathcal{L}_{div}	$\mathcal{L}_{\mathcal{N}}$	\mathcal{L}_E	$\mathcal{L}_{\hat{E}}$	Α	Avg	\mathcal{L}_{div}	$\mathcal{L}_{\mathcal{N}}$	\mathcal{L}_E	$\mathcal{L}_{\hat{E}}$	Α	Acc	_
	sour	ce mo	del		59.5		sourc	e mod	el		44.6	Method&Dataset Acc
1					62.1	1					47.8	$\frac{\text{Nichout Dutaset}}{\text{VisDA}(K=M=5)}$
					67.1						74.6	VisDA w/o $E(K=30)$ 84.0
				√	69.1					-	81.5	OH(K=3,M=2) 72.2
					65.2						61.2	OH w/o $E(K=9)$ 69.5
	~	✓		√	$\begin{bmatrix} 12.2 \\ 0.1 \end{bmatrix}$			✓			85.9	
\checkmark	\checkmark		\checkmark	\checkmark	69.1	\checkmark	\checkmark		\checkmark	\checkmark	82.0	

Table 6: Runtime analysis on SHOT and our method. For SHOT, pseudo labels are computed at each epoch. 20%, 10% and 5% denote the percentage of target features which are stored in the memory bank.

VisDA	Runtime (s/epoch)	Per-class (%)
SHOT	618.82	82.9
NRC	540.89	85.9
NRC(20% for memory bank)) 507.15	85.3
NRC(10% for memory bank)) 499.49	85.2
NRC(5% for memory bank)	499.28	85.1

Experiments-Analysis

Figure 2: (Left and middle) Ablation study of \mathcal{L}_{self} on Office-Home and VisDA respectively (**Right**) Performance with different r on VisDA.

Figure 3: (Left) The three curves are (on VisDA): target accuracy (*Blue*), ratio of features which have 5-nearest neighbors all sharing the same predicted label (*dashed Red*), and ratio of features which have 5-nearest neighbors all sharing the same and *correct* predicted label (*dashed Black*). (**Right**) Ablation study on choice of K and M on VisDA.

Figure 4: (Left) Ratio of different type of nearest neighbor features which have the correct predicted label, before and after adaptation. (**Right**) Visualization of target features after adaptation.

• It shows that after adaptation, the ratio of all types of neighbors having more correct predicted label.

Thanks