

HYPERDQN: A RANDOMIZED EXPLORATION METHOD FOR DEEP REINFORCEMENT LEARNING

Ziniu Li¹, Yingru Li^{1†}, Yushun Zhang¹, Tong Zhang^{2†}, and Zhi-Quan Luo^{1†}

¹Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China
²Hong Kong University of Science and Technology
{ziniuli, yingruli, yushunzhang}@link.cuhk.edu.cn,
tongzhang@ust.hk, luozq@cuhk.edu.cn

ICLR 2022

Problem: Exploration and Exploitation

Classic exploration methods

1.ε-greedy : Select greedy action with probability of (1-ε)
 Select action randomly with probability of ε
 ε decreases with the increase of the agent step

2.Boltzmann distribution : Select action according to the Boltzmann distribution of Q-value (softmax)

3.Upper confidence bounds(UCB) :
$$A_t^{UCB} \doteq arg \max_a \left[Q_t + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

 $N_t(a)$: The number of aciton a selected before time t

4. Thomson Sample : posterior sampling

(1)Set up Q-value distribution estimates for each action

(2)Sample randomly from each distribution to get Q-value, and select the action with the maximum Q-value

(3)Update distribution parameters based on reward

Benefits of posterior sampling

• The upper regret bound is reduced

Regret $(T, \mathcal{M}) = \sum_{l=0}^{T/H-1} \mathbb{E}_{\mathcal{M}} \left[V_0^*(s_{l0}) - \sum_{h=0}^{H} r_{lh} \right]$

• The randomness in posterior sampling could yield positive bias, which boosts optimistic behaviors

• the property of temporal extended exploration(deep exploration)

Randomized least-squares value iteration (RLSVI)

Algorithm 2 RLSVI with greedy action **Input:** Features $\Phi_0, ..., \Phi_{H-1}$; $\sigma > 0, \lambda > 0$ 1: for l = 0, 1, ... do Compute $\hat{\theta}_{l0}, ..., \hat{\theta}_{l,H-1}$ using Algorithm 1 2: Observe s_{l0} 3: for h = 0, ..., H - 1 do 4: Sample $a_{lh} \in \operatorname{argmax}_{\alpha \in \mathcal{A}} \left(\Phi_h \tilde{\theta}_{lh} \right) (s_{lh}, \alpha)$ 5: Observe r_{lh} and $s_{l,h+1}$ 6: end for 7: Observe r_{lH} 8: 9: **end for**

Step1: Given initial value of θ (l=0) Step2: Q-value comes from $\Phi\theta$,and select action with greedy strategy

Step3: Update θ according to Bayesian regression Step4: Repeat steps 2 and 3 for each episode Algorithm 1 Randomized Least-Squares Value Iteration Input: Data $\Phi_0(s_{i0}, a_{i0}), r_{i0}, ..., \Phi_{H-1}(s_{iH-1}, a_{iH-1}), r_{iH}$: i < L, Parameters $\lambda > 0, \sigma > 0$ Output: $\tilde{\theta}_{l0}, ..., \tilde{\theta}_{l,H-1}$ 1: for h = H - 1, ..., 1, 0 do 2: Generate regression problem $A \in \mathbb{R}^{l \times K}, b \in \mathbb{R}^{l}$: $A \leftarrow \begin{bmatrix} \Phi_h(s_{0h}, a_{0h}) \\ \vdots \\ \Phi_h(s_{l-1,h}, a_{l-1,h}) \end{bmatrix}$ $b_i \leftarrow \begin{cases} r_{ih} + \max_{\alpha} (\Phi_{h+1} \tilde{\theta}_{l,h+1})(s_{i,h+1}, \alpha) & \text{if } h < H - 1 \\ r_{ih} + r_{i,h+1} & \text{if } h = H - 1 \end{cases}$

3: Bayesian linear regression for the value function

$$\overline{\theta}_{lh} \leftarrow \frac{1}{\sigma^2} \left(\frac{1}{\sigma^2} A^{\top} A + \lambda I \right)^{-1} A^{\top} b$$
$$\Sigma_{lh} \leftarrow \left(\frac{1}{\sigma^2} A^{\top} A + \lambda I \right)^{-1}$$

4: Sample $\tilde{\theta}_{lh} \sim N(\bar{\theta}_{lh}, \Sigma_{lh})$ from Gaussian posterior 5: end for

Bayesian Linear Regression

conditions: $y = \langle \theta^*, x \rangle + \omega^*, \ \omega^* \sim N(0, \sigma_{\omega}^2)$ prior distribution $p_0(\theta^*) \sim N(\overline{\theta}_p, \sigma_p^2)$ Dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ According to Bayes formula:

$$p\big(\theta^*|\boldsymbol{\mathcal{D}}\big) = \frac{p\big(\boldsymbol{\mathcal{D}}|\theta^*\big)p_0\big(\theta^*\big)}{p(\boldsymbol{\mathcal{D}})} \ \Rightarrow \ p\big(\theta^*|\boldsymbol{\mathcal{D}}\big) \propto p\big(\boldsymbol{\mathcal{D}}|\theta^*\big)p_0\big(\theta^*\big) \ \Rightarrow \ p\big(\boldsymbol{\mathcal{D}}|\theta^*\big) = p\big(Y|\theta^*,X\big) \sim N\big(X\theta^*,\sigma_{\omega}^2\big)$$

Conjugate prior: For some likelihood functions, its prior and posterior have the same distribution Multi – dimensional gaussian distribution:

$$f(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (X-\mu)^T \Sigma^{-1} (X-\mu)\right\}, \quad \Sigma: \text{ Covariance matrix}$$

So we can assume that the distribution: $p\left(\theta^* | \boldsymbol{\mathcal{D}}\right) \sim N(\mu, \Sigma)$

For an ordinary multidimensional Gaussian distribution:

$$\begin{aligned} -\frac{1}{2}(X-\mu)^{T}\Sigma^{-1}(X-\mu) &= -\frac{1}{2}\left(X^{T}\Sigma^{-1}X-X^{T}\Sigma^{-1}\mu-\mu^{T}\Sigma^{-1}X+\mu^{T}\Sigma^{-1}\mu\right) \\ p(\mathcal{D}|\theta^{*}) &\propto p(\mathcal{D}|\theta^{*}) p_{0}(\theta^{*}) \propto \exp\left\{-\frac{1}{2\sigma_{\omega}^{2}}\left(Y^{T}-\theta^{*T}X^{T}\right)\left(Y-X\theta^{*}\right)\right\} \exp\left\{-\frac{1}{2\sigma_{p}^{2}}\left(\theta^{*}-\overline{\theta}_{p}\right)^{T}\left(\theta^{*}-\overline{\theta}_{p}\right)\right\} \\ &= \exp\left\{-\frac{1}{2\sigma_{\omega}^{2}}\left(Y^{T}Y-\theta^{*T}X^{T}Y-Y^{T}X\theta^{*}+\theta^{*T}X^{T}X\theta^{*}\right)-\frac{1}{2\sigma_{p}^{2}}\left(\theta^{*}-\overline{\theta}_{p}\right)^{T}\left(\theta^{*}-\overline{\theta}_{p}\right)\right\} \\ &= \exp\left\{-\frac{1}{2\sigma_{\omega}^{2}}\left(Y^{T}Y-\theta^{*T}X^{T}Y-Y^{T}X\theta^{*}+\theta^{*T}X^{T}X\theta^{*}\right)-\frac{1}{2}\left(\theta^{*}-\overline{\theta}_{p}\right)^{T}\left(\theta^{*}-\overline{\theta}_{p}\right)\right\} \\ &= \exp\left\{-\frac{1}{2\sigma_{\omega}^{2}}\left(Y^{T}Y-\theta^{*T}X^{T}Y-Y^{T}X\theta^{*}+\theta^{*T}X^{T}X\theta^{*}\right)-\frac{1}{2}\left(\theta^{*}-\overline{\theta}_{p}\right)^{T}\left(\theta^{*}-\overline{\theta}_{p}\right)\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\theta^{*T}\left(\sigma_{\omega}^{-2}X^{T}X+\sigma_{p}^{-2}I\right)\theta^{*}\right]+\frac{1}{2}\left[\theta^{*T}\left(\sigma_{\omega}^{-2}X^{T}Y+\sigma_{p}^{-2}\overline{\theta}_{p}\right)+\left(Y^{T}X\sigma_{\omega}^{-2}+\overline{\theta}_{p}^{T}\sigma_{p}^{-2}\right)\theta^{*}\right]+c\right\} \\ \text{Therefore} \qquad \Sigma = \sigma_{\omega}^{-2}X^{T}X+\sigma_{p}^{-2}I \quad \mu = \left(\sigma_{\omega}^{-2}X^{T}X+\sigma_{p}^{-2}I\right)\left(\sigma_{\omega}^{-2}X^{T}Y+\sigma_{p}^{-2}\overline{\theta}_{p}\right) \end{aligned}$$

Problem in extending to DRL

Features Φ

Þ Q

> The computational complexity

fixed
$$\phi$$
: $\Phi_K = \Phi_{K-1} + \phi(x_K)\phi(x_K)^\top$ with $\Phi_0 = \mathbf{0}$,
changing ϕ_K : $\Phi_K := \sum_{\ell=1}^K \phi_K(x_\ell)\phi_K(x_\ell)^\top$, $\Phi_{K-1} := \sum_{\ell=1}^{K-1} \phi_{K-1}(x_\ell)\phi_{K-1}(x_\ell)^\top$, \cdots
Covariance matrix

Hypermodel

Theorem 1 Let p_z be the unit Gaussian distribution in \Re^K . For all $\epsilon > 0$, $\delta > 0$, B > 0, and probability measures μ over $L_{\infty}(\mathcal{X}, B)$, there exists a transport map H from p_z to μ , a neural network $f_{\theta} : \mathcal{X} \mapsto \Re$ with a linear output node and ReLU hidden nodes, and a linear hypermodel $g_{\nu} : \mathcal{Z} \mapsto \Re^{N_{\theta}}$ such that

$$\|f_{g_{\nu}(z)} - f^*\|_{\infty} \le \epsilon,$$

with probability at least $1 - \delta$, for some $\nu \in \Re^{N_{\nu}}$, where $f^* = H(z)$.

A linear hypermodel can represent essentially any distribution over functions

HyperDQN

Loss function

$$L(\nu; \mathcal{D}) = \int_{z} p(z) \left[\sum_{(x,y,\xi)\in\mathcal{D}} \left(y + \underbrace{\sigma_{\omega} z^{\mathsf{T}} \xi}_{(a)} - \underbrace{\left(g_{f_{\nu_{\text{prior}}}(z)}(x) + g_{f_{\nu}(z)}(x) \right)}_{(b)} \right)^{2} + \underbrace{\sigma_{\omega}^{2}}_{\sigma_{p}^{2}} \|f_{\nu}(z)\|^{2}}_{(c)} \right] (dz),$$

$$(4.1)$$

$$\min_{\nu,\theta_{\text{hidden}}} \int_{z} p(z) \left[\sum_{(s,a,r,\xi,s')\in\mathcal{D}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{\mathsf{T}} \xi - Q_{\text{prediction}}(s,a,z) \right)^{2} + \frac{\sigma_{\omega}^{2}}{\sigma_{p}^{2}} \|f_{\nu}(z)\|^{2} \right] (dz),$$

$$(4.2)$$

where

$$Q_{\text{prediction}}(s, a, z) = Q_{\theta_{\text{prior}}, f_{\nu_{\text{prior}}}(z)}(s, a) + Q_{\theta_{\text{hidden}}, f_{\nu}(z)}(s, a),$$

$$Q_{\text{target}}(s', z) = r + \gamma \max_{a'} \left[Q_{\theta_{\text{prior}}, f_{\nu_{\text{prior}}}(z)}(s', a') + Q_{\bar{\theta}_{\text{hidden}}, f_{\bar{\nu}}(z)}(s', a') \right].$$
(4.3)

 $\begin{array}{l} p(z): \text{Gaussian distribution} \\ \xi: \text{a random vector independently sampled from the unit hypersphere} & \begin{array}{c} \text{Generate } \mathbf{x} \sim N(0, I) \\ \\ \sigma_{\omega} z^{T} \xi: \text{is an artificial noise term exerted on the label y} \end{array} \\ \\ \begin{array}{c} \sigma_{\omega}^{2} \\ \sigma_{p}^{2} \end{array} \| f_{v}(z) \|^{2}: \text{a regularization term} \end{array} \right.$

Theorem

$$L(\nu; \mathcal{D}) = \int_{z} p(z) \left[\sum_{\substack{(x,y,\xi) \in \mathcal{D}}} \left(y + \underbrace{\sigma_{\omega} z^{\mathsf{T}} \xi}_{(a)} - \underbrace{\left(g_{f_{\nu_{\text{prior}}}(z)}(x) + g_{f_{\nu}(z)}(x) \right)}_{(b)} \right)^{2} + \underbrace{\frac{\sigma_{\omega}^{2}}{\sigma_{p}^{2}} \left\| f_{\nu}(z) \right\|^{2}}_{(c)} \right] (\mathrm{d}z),$$

$$(4.1)$$

Assumption 1. Suppose the data generation follows $y = x^{\top}\theta^{*} + \omega^{*}$, $\omega^{*} \sim \mathcal{N}(0, \sigma_{\omega}^{2})$ and the prior distribution over θ^{*} is $\mathcal{N}(\bar{\theta}_{p}, \sigma_{p}^{2}I)$. Furthermore, assume the base model is linear, i.e., $g_{f_{\nu}(z)}(x) = x^{\top}f_{\nu}(z)$ and $g_{f_{\nu_{prior}}(z)}(x) = x^{\top}f_{\nu_{prior}}(z)$. Moreover, assume the hypermodel is also linear, i.e., $f_{\nu}(z) = \nu_{w}^{\top}z + \nu_{b}$ and $f_{\nu_{prior}}(z) = \nu_{w}^{prior}z + \nu_{b}^{prior}$; $\nu = (\nu_{w}, \nu_{b})$ and $\nu_{prior} = (\nu_{w}^{prior}, \nu_{b}^{prior})$.

Theorem 1 (Formal statement). Under Assumption 1, set $\nu_w^{prior} = \sigma_p I$ and $\nu_b^{prior} = \bar{\theta}_p$. Let $\nu^* = (\nu^*_w, \nu^*_b)$ be the optimal solution of (4.1) conditioned on specific realizations of ξ , then $\theta := f_{\nu_{prior}}(z) + f_{\nu^*}(z) \sim \mathcal{N}(\nu_b^{prior} + \nu_b^*, (\nu_w^{prior} + \nu_w^*)^\top (\nu_w^{prior} + \nu_w^*))$ with $\nu_b^{prior} + \nu_b^* = \mathbb{E}[\theta^* \mid \mathcal{D}], \quad (\nu_w^{prior} + \nu_w^*)^\top (\nu_w^{prior} + \nu_w^*) = \operatorname{Cov}[\theta^* \mid \mathcal{D}] + \operatorname{err}(\Xi),$

where

$$\operatorname{err}(\Xi) := \operatorname{Cov}[\theta^{\star} \mid \mathcal{D}] \left(\frac{1}{\sigma_{\omega}^{2}} \sum_{(x,\xi) \neq (x',\xi') \in \mathcal{D}} x\xi^{\top}\xi' x'^{\top} + \frac{1}{\sigma_{\omega}\sigma_{p}} \sum_{(x,\xi) \in \mathcal{D}} (x\xi^{\top} + \xi x^{\top}) \right) \operatorname{Cov}[\theta^{\star} \mid \mathcal{D}]$$

Furthermore, the error term satisfies $\mathbb{E}_{\Xi}[err(\Xi)] = 0$.

Noise choice

z-dependent noise is indispensable

Algorithm

Algorithm 2 HyperDQN

1: agent step $n \leftarrow 0$, train step $\ell \leftarrow 0$. 2: for episode $k = 0, 1, 2, \cdots$ do 3: generate a random vector $z \sim \mathcal{N}(0, I)$. 5: for stage $t = 0, 1, 2, \cdots, T - 1$ do 6: observe state s_i . 7: take the greedy action $a \leftarrow \operatorname{argmax}_a Q_{\theta}(s_t, a, z)$. 8: receive the next state s_{t+1} and reward $r(s_t, a_t)$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors $z'_i: \widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{target}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{prediction}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{s,a,r,\xi,s' \in \widetilde{\mathcal{D}}} \left(Q_{target}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{prediction}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{s,a,r,\xi,s' \in \widetilde{\mathcal{D}}} \left(Q_{target}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{prediction}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{s,a,r,\xi,s' \in \widetilde{\mathcal{D}}} \left(Q_{target}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{prediction}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ $	0			
2: for episode $k = 0, 1, 2, \cdots$ do 3: generate a random vector $z \sim \mathcal{N}(0, I)$. 4: instantiate the Q-value function $Q_{\theta}(s, a, z)$. 5: for stage $t = 0, 1, 2, \cdots, T - 1$ do 6: observe state s_t . 7: take the greedy action $a \leftarrow \operatorname{argmax}_a Q_{\theta}(s_t, a, z)$. 8: receive the next state s_{t+1} and reward $r(s_t, a_t)$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n, \tan frequency M) == 0 then 13: sample n mandom vectors $z'_t: \tilde{Z} = \{z'_t\}_{t=1}^N$. 14: sample N random vectors $z'_t: \tilde{Z} = \{z'_t\}_{t=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\tilde{\mathcal{D}}$ and \tilde{Z} . 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for 23: end for 24: $\sum_{x \in \tilde{Z}} \frac{ \mathcal{D} }{ \tilde{Z} } \sum_{x \in \tilde{Z}} \frac{ \mathcal{D} }{ \tilde{D} } \sum_{(s,a,r,\xi,s') \in \tilde{\mathcal{D}}} \left(Q_{target}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{prediction}(s, a, z) \right)$	1: 8	agent step $n \leftarrow 0$, train step $\ell \leftarrow 0$.		
3: generate a random vector $z \sim \mathcal{N}(0, I)$. instantiate the Q -value function $Q_{\theta}(s, a, z)$. 5: for stage $t = 0, 1, 2, \dots, T - 1$ do beserve state s_t . 7: take the greedy action $a \leftarrow \operatorname{argmax}_a Q_{\theta}(s_t, a, z)$. 8: receive the next state s_{t+1} and reward $r(s_t, a_t)$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors z_i^t : $\widetilde{\mathcal{Z}} = \{z_i^t\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end for 21: end for 22: end for 22: end for 23: $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{target}(s', z) + \sigma_{\omega} z^{\top} \xi - Q_{prediction}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \frac{\xi}{ \widetilde{\mathcal{L}} ^2} + \frac{1}{ \widetilde{\mathcal{D}} } \frac{\xi}{ \widetilde{\mathcal{L}} ^2} + \frac{1}{ \widetilde{\mathcal{D}} } \frac{\xi}{ \widetilde{\mathcal{L}} ^2} + \frac{\xi}{ \widetilde{\mathcal{D}} ^2} + \frac{\xi}{ \widetilde{\mathcal{L}} ^2} + \frac{\xi}{ \mathcal{$	2: 1	for episode $k = 0, 1, 2, \cdots$ do		
4: Instantiate the Q -value function $Q_{\theta}(s, a, z)$. 5: for stage $t = 0, 1, 2, \dots, T - 1$ do 6: observe state s_t . 7: take the greedy action $a \leftarrow \operatorname{argmax}_a Q_{\theta}(s_t, a, z)$. 8: receive the next state s_{t+1} and reward $r(s_t, a_t)$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step $n, \text{train frequency } M) == 0$ then 13: sample a mini-bach $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors z'_i : $\widetilde{\mathcal{Z}} = \{z_i^1\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for 22: end for	3:	generate a random vector $z \sim \mathcal{N}(0, I)$.	⊳ Sampling	
5: for stage $t = 0, 1, 2, \dots, T - 1$ do 6: observe state s_t . 7: take the greedy action $a \leftarrow \arg argmax_a Q_{\theta}(s_t, a, z)$. 8: receive the next state s_{t+1} and reward $r(s_t, a_t)$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then 13: sample a mini-bach $\tilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors z'_i : $\tilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\tilde{\mathcal{D}}$ and $\tilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for 22: end for 23: end for 24: $ \tilde{\mathcal{Z}} \left(\sum_{z \in \tilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \tilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \tilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z)\right)$	4:	instantiate the Q-value function $Q_{\theta}(s, a, z)$.		
6: observe state s_t . 7: take the greedy action $a \leftarrow \operatorname{argmax}_a Q_{\theta}(s_t, a, z)$. 8: receive the next state s_{t+1} and reward $r(s_t, a_t)$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then \triangleright Update 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors $z'_i: \widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for 22: end for 23: $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z) + \frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \mathcal{$	5:	for stage $t = 0, 1, 2, \cdots, T - 1$ do	▷ Interaction	
7: take the greedy action $a \leftarrow \operatorname{argma}_{a} Q_{\theta}(s_{t}, a, z)$. 8: receive the next state s_{t+1} and reward $r(s_{t}, a_{t})$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_{t}, a_{t}, r, \xi, s_{t+1})$ into the replay biffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then \triangleright Update 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors $z'_{i}: \widetilde{\mathcal{Z}} = \{z'_{i}\}_{i=1}^{N}$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for 23: end for	6:	observe state s_t .		
8: receive the next state s_{t+1} and reward $r(s_t, a_t)$. 9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then \triangleright Update 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors z'_i : $\widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for 22: end for 23: $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z) \right)$	7:	take the greedy action $a \leftarrow \operatorname{argmax}_a Q_{\theta}(s_t, a, z)$.		
9: sample ξ uniformly from unit hypersphere. 10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then \triangleright Update 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors $z'_i: \widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z) \right)$	8:	receive the next state s_{t+1} and reward $r(s_t, a_t)$.		
10: store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} . 11: agent step $n \leftarrow n+1$. 12: if mod (agent step n , train frequency M) == 0 then \triangleright Update 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors $z_i^t: \widetilde{\mathcal{Z}} = \{z_i^t\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z) \right)$	9:	sample ξ uniformly from unit hypersphere.		
11: agent step $n \leftarrow n + 1$. 12: if mod (agent step n , train frequency M) == 0 then \triangleright Update 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors $z'_i: \widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z)\right)$	10:	store $(s_t, a_t, r, \xi, s_{t+1})$ into the replay buffer \mathcal{D} .		
12: if mod (agent step <i>n</i> , train frequency <i>M</i>) == 0 then 13: sample a mini-batch $\widetilde{\mathcal{D}}$ of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample <i>N</i> random vectors $z'_i: \widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for 22: end for 1 $ \widetilde{\mathcal{Z}} \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z)\right)$	11:	agent step $n \leftarrow n+1$.		
13: sample a mini-batch \mathcal{D} of (s, a, r, ξ, s') from the replay buffer \mathcal{D} . 14: sample N random vectors $z'_i: \widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s', z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s, a, z) \right)$	12:	if mod (agent step n, train frequency M) == 0 then	⊳ Update	
14: sample N random vectors $z'_i: \widetilde{Z} = \{z'_i\}_{i=1}^N$. 15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with \widetilde{D} and \widetilde{Z} . 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for 22: end for $\frac{1}{ \widetilde{Z} } \left(\sum_{z \in \widetilde{Z}} \frac{ \mathcal{D} }{ \widetilde{D} } \sum_{(s,a,r,\xi,s') \in \widetilde{D}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right)$	13:	sample a mini-batch \mathcal{D} of (s, a, r, ξ, s') from the replay by	Iffer \mathcal{D} .	
15: optimize ν and θ_{hidden} using the empirical loss function (A.6) with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$. 16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right)$	14:	sample N random vectors $z'_i: \widetilde{\mathcal{Z}} = \{z'_i\}_{i=1}^N$.		
16: train step $\ell \leftarrow \ell + 1$. 17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{Z} } \left(\sum_{z \in \widetilde{Z}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	15:	optimize ν and θ_{hidden} using the empirical loss function (A	$\widetilde{\mathcal{D}}$, with $\widetilde{\mathcal{D}}$ and $\widetilde{\mathcal{Z}}$.	
17: end if 18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{Z} } \left(\sum_{z \in \widetilde{Z}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	16:	train step $\ell \leftarrow \ell + 1$.		
18: if mod (train step ℓ , target update frequency G) == 0 then 19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{Z} } \left(\sum_{z \in \widetilde{Z}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	17:	end if		
19: update the target network. 20: end if 21: end for 22: end for $\frac{1}{ \widetilde{Z} } \left(\sum_{z \in \widetilde{Z}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	18:	if mod (train step ℓ , target update frequency G) == 0 then		
20: end if 21: end for 22: end for $\frac{1}{ \widetilde{Z} } \left(\sum_{z \in \widetilde{Z}} \frac{ \mathcal{D} }{ \widetilde{D} } \sum_{(s,a,r,\xi,s') \in \widetilde{D}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	19:	update the target network.		
21: end for 22: end for $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	20:	end if		
22: end for $\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	21:	end for		
$\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{T} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$	22: (end for		
$\frac{1}{ \widetilde{\mathcal{Z}} } \left(\sum_{z \in \widetilde{\mathcal{Z}}} \frac{ \mathcal{D} }{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left(Q_{\text{target}}(s',z) + \sigma_{\omega} z^{\top} \xi - Q_{\text{prediction}}(s,a,z) \right) \right)$		/	∲	
$\overline{ \widetilde{\mathcal{Z}} } \left[\sum_{z \in \widetilde{\mathcal{Z}}} \frac{1}{ \widetilde{\mathcal{D}} } \sum_{(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}} \left[Q_{\text{target}}(s',z) + \sigma_{\omega} z + \xi - Q_{\text{prediction}}(s,a,z) \right] \right]$		$1 \int \sum \mathcal{D} $	$\sum \left(\begin{array}{c} c \\ c \end{array} \right) \left(\begin{array}{c} c \end{array} \right) \left(\begin{array}{c} c \\ c \end{array} \right) \left(\begin{array}{c} c \\ c \end{array} \right) \left(\begin{array}{c} c \\ c \end{array} \right) \left(\begin{array}{c} c \end{array} \right) \left(\begin{array}{c} c \\ c \end{array} \right) \left(\begin{array}{c} c \end{array} \right) $	
$\begin{array}{c c} \mathcal{L} & \sum_{z \in \widetilde{\mathcal{Z}}} \mathcal{L} & (s, a, r, \xi, s') \in \widetilde{\mathcal{D}} \end{array} \\ \end{array} $		$\overline{ \widetilde{\mathfrak{z}} } \int \sum \overline{ \widetilde{\mathfrak{D}} }$	$\sum \qquad (Q_{\text{target}}(s',z) + \sigma_{\omega}z'\xi -$	- $Q_{\text{prediction}}(s, a, z)$
		$ \mathcal{Z} = \int_{z \in \widetilde{\mathcal{Z}}} \mathcal{D} $ (s	$(s,a,r,\xi,s') \in \widetilde{\mathcal{D}}$	/

Experiment

Atari

Table 2: Comparison of algorithms on Atari in terms of the median over 49 games' maximum human-normalized scores. Note that the performance of DQN is based on 200M training frames while other methods are based on 20M training frames.

DQN (200M)	OPIQ	OB2I	BootDQN	NoisyNet	HyperDQN
93%	37%	50%	82%	91%	110%

Experiment

SuperMarioBros

Table 3: Comparison of algorithms on SuperMarioBros in terms of the raw scores by the best policies with 20M training frames.

	DQN	OPIQ	OB2I	BootDQN	NoisyNet	HyperDQN
SuperMarioBros-1-1	1,070	7,650	4,457	7,009	12,439	7,924
SuperMarioBros-1-2	2,883	5,515	4,695	5,665	6,347	8,267
SuperMarioBros-1-3	667	2,053	1,583	1,609	1,587	6,047
SuperMarioBros-2-1	10,800	21,654	14,226	${\bf 26, 415}$	14,017	23,047
SuperMarioBros-2-2	813	1,630	1,588	1,092	1,808	1,984
SuperMarioBros-2-3	3,373	4,718	4,402	5,108	$\mathbf{6, 490}$	5,980
SuperMarioBros-3-1	2,560	3,700	3,251	3,862	11,310	${f 48, 385}$
SuperMarioBros-3-2	11,633	20,872	26,508	20,955	33,489	41, 140
SuperMarioBros-3-3	1,007	2,440	3,009	2,650	${\bf 5,886}$	5,568

Deep Sea

Thanks