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is data stored
and (re-)used

later?

; transitions ; lic 2oy
1. Exploration 2. Learning poticy 3. Application
No Yes
e e s = . recurnn
Fig. 1 The three distinct phases of the batch reinforcement learning process: 1: Collecting tran- pure episodes ofgdata
sitions with an arbitrary sampling strategy. 2: Application of (batch) reinforcement learning algo- online collection?
rithms in order to learn the best possible policy from the set of transitions. 3: Application of the

learned policy. Exploration is not part of the batch learning task. During the applicatign fmase, that
isn’t part of the learning task either, policies stay fixed and are not improved furthei:

. is data used only
Differences between RL and BatchRL onco and then @

Yes No

L. . . Yes FQl, LSPI,
- Traditional RL update its Q or V by the experiences KADP. ..
collected recently,but Batch RL’s experiences come from oS Jaadca, Jrda. 1685 plessh

. . .. . semi-batcl -learning
different policy.Because Traditional RL's experiences are = b

. . Experience Replay,

usually collected by the behavior agent which has been NFQ,
Ite rated SEVE ral epOChS agO'Sharlng the Sl mllar (S'a) Fig. 4 Classification of batch vs. non-batch algorithms. With the interaction perspective and the
diStribUtiOn Wlth the current behavior agent BUt the data-usage perspective there are at least two different perspectives with which to defituy fé caiza Gey:

borders.
Batch RL collects its experiences by expert behavior or

even some trash agents,so it’s hard for Batch RL to learn
correctly from these out-of-distribution experiences.




¥ Background-BatchRL

transitions policy

1. Exploration

2. Learning

3. Application

Fig. 1 The three distinct phases of the batch reinforcement learning process: 1: Collecting tran-
sitions with an arbitrary sampling strategy. 2: Application of (batch) reinforcement learning algo-
rithms in order to learn the best possible policy from the set of transitions. 3: Application of the
learned policy. Exploration is not part of the batch learning task. During the applicaticn jmasz, that
isn’t part of the learning task either, policies stay fixed and are not improved furthei:

Differences between IL and BatchRL

IL usually needs the experiences collected by the

expert, because IL extrapolate the actions only by the
states.But batch RL can use any experiences(with high
coverage of (s,a)),because batch RL can extrapolate the
Q or V from the now state,and then choose actions
according it.
- In conclusion,IL aims at making connections between
states and actions,but Batch RL making connections
between states and the estimated Q value of (s,a) or V
value of (s).

is data stored
and (re-)used

later?

No Yes

pure
online

Yes

is data used only
once and then
discarded?

Yes
e.q. Singh, Jaakkola, Jordan:1995 dsfnﬁ'f
semi-batch TD(0) / Q-learning batch

episodes of data
collection?

recurring

No

FQl, LSPI,
KADP, ...

Experience Replay,
NFQ,

Fig. 4 Classification of batch vs. non-batch algorithms. With the interaction perspective and the
data-usage perspective there are at least two different perspectives with which to defituy fé caiza Gey:
borders.




'Analysis of Extrapolation Error

- Absent Data

When (s,a,r,s’) is chosen to
update the Q value,we need
the optimal action of s’ called
a’,then we use Q(s’,a’) and r
to update Q(s,a).However,if
we didn’t have (s’,a’) in the
batch,the Q(s’,a’) will be
wrongly estimated which can
causes Q(s,a) wrong too.

- Model bias - Training mismatch

When facing stachostic MDP, The same with other two
choosing a in state s may lead problems.

to the state s'; and s', with Like PPO and TRPO,off-plicy
different probabilities. But if methods which bound the
the batch only have (s,a,r, s';) agent update in a limitation
in,it may cause the equation which prevents from out-of-
below being estimated distribution.

wrongly.

T7Q(s,a) = Evp[r +7Q(s", m(s"))],
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'Analysis of Extrapolation Error

m Off-Policy DDPG == Behavioral  -e- True Value
Batch 1 (Final buffer). We train a DDPG agent for 1 mil- i s i
lion time steps, adding A'(0, 0.5) Gaussian noise to actions Dase e <
for high exploration, and store all experienced transitions. & 2000 2000 2000

This collection procedure creates a dataset with a diverse
set of states and actions, with the aim of sufficient coverage.

Batch 2 (Concurrent). We concurrently train the oft-policy
and behavioral DDPG agents, for 1 million time steps. To
ensure sufficient exploration, a standard N'(0,0.1) Gaus-
sian noise is added to actions taken by the behavioral pol-
icy. Each transition experienced by the behavioral policy is
stored in a buffer replay, which both agents learn from. As
a result, both agents are trained with the identical dataset.

Batch 3 (Imitation). A trained DDPG agent acts as an ex-
pert, and is used to collect a dataset of 1 million transitions.
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'Analy51s of Extrapolation Error bdetiaa
Theorem 1. Performing Q-learning by sampling from a batch B converges to the optimal value function under the MDP

Remark 1. For any policy m and state-action pair (s, a), the error term eypp(s, a) satisfies the following Bellman-like
equation:

avop(s.a) = 3 (par(s']s.a) — ps(s'|s,)) [ r(s.a,8") +7 3 7(d|s) (Q(s,a)
a (16)

+ par(s m(a'|s")empp(s’, a’).

Lemma 1. For all reward functions, €}y, — 0 if and only if p(s’|s,a) = pr(s'|s, a) forall ' € S and (s. a) such that
fr(8) > 0andw(als) > 0.

Proof. From Remark 1, we note that the form of eppp(s, @), since no assumptions can be made on the reward function and
therefore the expression (s, a, s’) + v Zw w(a'|s")QE(s",a"), we have that empp(s,a) = 0 if and only if pg(s’|s,a) =
pa(s’|s,a) forall s’ eSandpu( » T(a'|s ) empr(s’,a’) = 0.

(=) Now we note that if eypp(s, a} — 0 then ppr(s'[s,a)y >, m(a’|s )empp(s’, u’} =0 by the rclationﬁhip dcﬁncd by
Remark 1 and the condition on the reward function. It follows that we must have pg(s’ = pum(s

(<) If we have >, |par(s’]s,a) — pg{s’h a)| = 0 for all (s, a) such that pr(s) = 0and ?r(a|5) > (), then for any (s, a)
under the given conditions, we have €(s,a) = > __, par(s'|s,a)y D, w(a'|s")e(s", a’). Recursively expanding the € term,
we arrive at €(s,a) = 0 +90 + 720 + ... = 0.




' Analysis of Extrapolation Error B i

Theorem 2. For a deterministic MDP and all reward functions, €};np = 0 if and only if the policy 7 is batch-constrained.
Furthermore, if B is coherent, then such a policy must exist if the start state sg € B.

Theorem 3. Given the Robbins-Monro stochastic convergence conditions on the learning rate o, and standard sampling
requirements from the environment, BCQL converges to the optimal value function QQ*.

Theorem 4. Given a deterministic MDP and coherent batch B, along with the Robbins-Monro stochastic convergence

conditions on the learning rate « and standard sampling requirements on the batch B, BCOL converges to (Q%(s, a) where
m*(s) = argmax, ., (. . er QF (8, a) is the optimal batch-constrained policy.




' Algotirhm

Algorithm 1 BCQ

Input: Batch B, horizon T, target network update rate
7, mini-batch size /N, max perturbation ®, number of
sampled actions n, minimum weighting A.
Initialize Q-networks @0y, , (0y, . perturbation network £,
and VAE G, = {E., D, }, with random parameters 61,
02, ¢, w, and target networks Qg , Qgy, £y With 0]
91595 — B, (;.); — .
fort =1toT do
Sample mini-batch of [V transitions (s, a,r, s") from B
po=FE, (s,a), a=D,,(s.2), z~N(uo)
w ¢ argmin, Y _(a — a)? + Dxr (N (p, @)||IN(0,1))
Sample n actions: {a; ~ G, (s')}",
Perturb each action: {a; = a; + £4(s", a;, @)}y
Set value target y (Eqn. 13)
6 « argming > (y — Qo (s, a))?
¢+ argmaxy »_ Qp, (s, a+ &x(s,a,P)).a ~ G, (s)
Update target networks: @) <— 76 + (1 — 7)0.
o 1o+ (1—7)¢
end for

Nanjing University of Aeronautics and Astronautics

r+ymax [A min Q,{y (s',a;) + (1 — 111?,){ Q{j" (s, -:11}]

[ J_]- 1=
(13)
The equation of Q_target
(s) = argmax Qo(s,a; + Eo(s, i, @)),
ai+€s(s,a:,P) (11)

{--"‘“G (s )h 1-

VAE introduce action and action distribution like PPO

¢ ¢+ argmax Z Qol(s.a+ Ey(s,a, P)). (12)

¢ (s.a)EB

Update pertube net to find the maximum Q Value

diL

VAEH Tbound action e[, L3 M 4%
H T3 &L sE (dlver5|ty)
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mBCO wmDDPG wDON wmBC = VAE-BC
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' Experiment
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