

Visual Attention Consistency under Image Transforms for Multi-Label Image Classification

Hao Guo[‡], Kang Zheng[‡], Xiaochuan Fan[‡], Hongkai Yu[‡], Song Wang^{†,‡,*} [†]Tianjin University, [‡]University of South Carolina, [#]University of Texas - Rio Grande Valley {hguo, zheng37}@email.sc.edu, efan3000@gmail.com, hongkai.yu@utrgv.edu, songwang@cec.sc.edu

CVPR 2019

Multi-Label Learning

- Multi-label learning vs. ordinary supervised learning

Ordinary supervised learning (only one ground-truth label)

Multi-label Learning (multiple ground-truth labels)

Multi Label Learning: Applications

• Human protein atlas image classification

Multi-Label Learning: Applications

• Automatic Retail Checkout

[Wei et al., arxiv 2019]

Background: Class Activation Mapping

• Global Average Pooling (GAP)

Attention heatmap M = g(I) $M_j(m,n) = \sum_{k=1}^{C} W(j,k) F_k(m,n),$

The Proposed Network

• Two-branch network

• Weighted binary cross entropy loss

$$\ell_c = -\frac{1}{N} \sum_{i=1}^N \sum_{j=1}^L \omega_{ij} \left(y_{ij} \log \frac{1}{1 + e^{-x_{ij}}} + (1 - y_{ij}) \log \frac{e^{-x_{ij}}}{1 + e^{-x_{ij}}} \right)$$

$$\omega_{ij} = \begin{cases} e^{1-p_j} & \text{if } y_{ij} = 1\\ e^{p_j} & \text{if } y_{ij} = 0 \end{cases},$$

The Proposed Network

• Two-branch network

• Visual Attention Consistency

$$T(g(I)) = g(T(I))$$
 $\ell_a = rac{1}{NLHW} \sum_{i=1}^N \sum_{j=1}^L \|\hat{M}_{ij} - M'_{ij}\|_2$

• The joint objective function

$$\ell = \ell_c + \lambda \ell_a$$

Understanding Representation

- Equivariance of Representation
 - Study how transformations of the input image are encoded by the representation

 $\phi(g\mathbf{x}) \approx M_g \phi(\mathbf{x})$

Understanding Representation

1952 VUA

- Learning the equivariance
 - Equivariant transformations can be learned empirically from data, and amount to simple linear transformation of the representation output

- Equivariant transformations:
 - Scaling, rotation, flipping, translation
- Equivariant representation:
 - HOG
 - Early convolutional layers in CNNs

Connection to Consistency Regularization

• Main differences

Impact to the network

- $\sum_{b=1}^{\mu B} \|p_{\mathbf{m}}(y|\,\alpha(u_b)) p_{\mathbf{m}}(y|\,\alpha(u_b))\|_2^2 \qquad \bullet$
- Different transformations
- Impose transforms on the final output (high-level representation).

$$\ell_a = rac{1}{NLHW} \sum_{i=1}^N \sum_{j=1}^L \| \hat{oldsymbol{M}}_{ij} - oldsymbol{M'}_{ij} \|_2$$

- Single transformation
- The proposed method enforces attention consistency at middlelevel representation.

Experiments

• Ablation studies

Table 1. Performance (%) on WIDER Attribute dataset in terms of label-based metrics. The best results are highlighted in bold font and red color, while the second bests are in blue.

model	mAP	mA	F1-C	P-C	R-C	F1-0	P-O	R-O
R50	83.4	82.0	73.9	79.5	69.4	79.4	82.3	76.6
R50+t	83.7	83.4	74.1	75.6	72.8	79.5	80.6	78.4
R50+r	83.2	82.8	73.2	75.9	71.1	78.5	81.0	76.1
R50+s	83.9	83.0	74.4	77.7	71.7	79.4	81.3	77.6
R50+f	84.2	82.8	74.6	79.5	70.7	80.0	82.9	76.9
R50+ACt	83.9	84.0	74.2	74.5	74.2	79.2	79.7	78.7
R50+ACr	85.0	83.3	75.1	79.2	71.8	80.2	82.3	77.9
R50+ACs	85.6	82.7	75.3	81.9	70.1	80.6	84.5	77.1
R50+ACf	86.3	84.5	76.4	78.9	74.3	81.2	82.6	79.8
R50+ACfs	86.8	83.7	76.5	82.4	72.1	81.8	84.4	79.3
R101	84.8	83.2	75.5	80.5	71.5	80.6	83.6	77.8
R101+ACt	84.6	83.5	75.3	79.1	71.9	80.1	83.1	77.3
R101+ACr	86.0	84.2	76.2	79.5	73.6	81.2	83.2	79.4
R101+ACs	86.5	83.6	76.5	82.4	71.9	81.6	85.1	78.3
R101+ACf	87.1	84.7	77.4	80.9	74.5	82.1	83.8	80.5
R101+ACfs	87.5	85.0	77.6	81.3	74.8	82.4	84.1	80.7

• MS-COCO

Table 6. Performance (%) of the comparison methods and the proposed method on MS-COCO dataset with label-based metrics. The method ResNet101* represents the baseline used in work [67] implemented from the original ResNet101 [20] with complex data augmentations.

				-			-			-		-		
Method		All					top-3							
		mAP	F1-C	P-C	R-C	F1-0	P-O	R-O	F1-C	P-C	R-C	F1-0	P-O	R-O
WARP [17]		-	-	-	-	-	-	-	55.7	59.3	52.5	60.7	59.8	61.4
CNN-RNN [53]		-	-	-	-	-	-	-	60.4	66.0	55.6	67.8	69.2	66.4
ResNet101* [67]		75.2	69.5	80.8	63.4	74.4	82.1	68.0	65.9	84.3	57.4	71.7	86.5	61.3
ResNet101-SRN [67]		77.1	71.2	81.6	65.4	75.8	82.7	69.9	67.4	85.2	58.8	72.9	87.4	62.5
baseline	ResNet101	74.9	69.7	70.1	69.7	73.7	73.6	73.7	66.1	77.7	59.8	71.2	82.2	62.8
Ours	ResNet101-ACs	76.8	70.1	83.3	62.1	74.9	85.7	66.5	66.3	87.6	56.3	72.0	89.6	60.1
	ResNet101-ACf	77.3	71.9	73.5	71.0	75.7	76.5	74.9	67.9	81.9	61.0	73.0	84.5	64.2
	ResNet101-ACfs	77.5	72.2	77.4	68.3	76.3	79.8	73.1	68.0	85.2	59.4	73.1	86.6	63.3

Experiments

• WIDER

Table 4. Performance (%) of the comparison methods and the proposed method on WIDER in terms of label-based metrics. The method ResNet101* represents the baseline used in work [67] implemented from the original ResNet101 [20] with multiple data augmentations.

method		mAP	F1-C	P-C	R-C	F1-O	P-O	R-O
R-CNN [15]		80.0	-	-	-	-	-	-
R*(CNN [16]	80.5	-	-	-	-	-	-
DHC [34]		81.3	-	-	-	-	-	-
AR [18]		82.9	-	-	-	-	-	-
ResNet101* [67]		85.0	74.7	-	-	80.4	-	-
SRN [67]		86.2	75.9	-	-	81.3	-	-
VAA [44]		86.4	-	-	-	-	-	-
Ours	R50	83.4	73.9	79.5	69.4	79.4	82.3	76.6
	R50+ACs	85.6	75.3	81.9	70.1	80.6	84.5	77.1
	R50+ACf	86.3	76.4	78.9	74.3	81.2	82.6	79.8
	R50+ACfs	86.8	76.5	82.4	72.1	81.8	84.4	79.3
Ours	R101	84.8	75.5	80.5	71.5	80.6	83.6	77.8
	R101+ACs	86.5	76.5	82.4	71.9	81.6	85.1	78.3
	R101+ACf	87.1	77.3	80.9	74.5	82.1	83.8	80.5
	R101+ACfs	87.5	77.6	81.3	74.8	82.4	84.1	80.7

• Visualization

Figure 5. Attention heatmaps for classifying label "T-shirt" from flipped (row 1), original (row 2), and scaled (row 3) images using different models.

Nanjing University of Aeronautics and Astronautics

ΤΗΑΝΚS