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I Main idea PEIFNP_E

« At each iteration, search an expert model for the forgotten
knowledge and distill to the current model
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I Model Learning PEIFNP_E

ty = ﬂ?"ﬁﬂli:ﬂﬂtb(?ﬁ(ﬁ'.n] + Lf{L(IHL—m .~ 55)

Knowledge
distillation loss

¥
ie., Z{:::hyi-}éﬂ K L-Divergence(f(x;;0;_as), fx;:604)).

Key Problem: How to select the expert model for knowledge distillation?

1. Monotonic Consistency (TrustAL-MC)

Use the last round model, i.e., @i_ay = 6,1 = M.

2. Non-monotonic Consistency (TrustAL-NC)

Find a model which has the knowledge of forgettable examples for
the current model.
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I TrustAL-NC ParN.C

« Given a development dataset D,,,, with m examples, calculate the
forgotten event for each example i in Dy,

Definition 2 (Correct Inconsistency) The degree of correct
inconsistency of 0, for sample x; is measured as the number, . cf = = 1,
of occurrences of forgetting events for sample x; from any
predecessor model 0;_ 5, where () < At < 1

II:“] Z ]]'Ifr_r,n:-!I at}uu }

At=1

=i

Higher value means
easily forgettable

« Select the expert model based on the following weighted accuracy on D,,,.

g(Oi_nas. My) = *f:”{aﬂcl_‘m R acc:‘m}jm

Higher value means the expert model 6t-At tends to have the knowledge
of forgettable examples for the current model
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v Datasets

B TREC (Roth et al. 2002).
B Movie review (Pang and Lee 2005).

B SST-2 (Socher et al. 2013).

v Baselines

B CONF (Wang and Shang 2014): An uncertainty-based method that

selects samples with least confidence..

B CORESET (Sener and Savarese 2018): A diversitybased method that

selects coreset of remaining samples.

B BADGE (Ash et al. 2019): A hybrid method that selects samples

considering both uncertainty and diversity.
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Figure 3: Accuracy (a-c) and MCI (d-f) versus the ratio of labeled samples
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« How does TrustAL help data acquisition?
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Figure 5: Data acquisition analysis in stable phase on TREC;
x-axis represents the ratio of labeled samples and y-axis rep-

resents the corresponding metrics.

« better model training leads to better acquisition, strengthening
models ability to identify more informative samples
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« Traditional AL framework may suffer from
knowledge forgetting.

« Introducing the knowledge distillation technique can
mitigate this problem by properly selecting the
expert model.

« Better model learning scheme also strengthen the
subsequent query quality.
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