

南京航空航天大學

Nanjing University of Aeronautics and Astronautics

EXPLORING BALANCED FEATURE SPACES FOR REPRESENTATION LEARNING

Bingyi Kang¹, Yu Li², Zehuan Yuan³, Jiashi Feng¹

¹National University of Singapore, ²Institute of Computing Technology, CAS, ³ByteDance AI Lab kang@u.nus.edu,liyu@ict.ac.cn,yuanzehuan@bytedance.com,elefjia@nus.edu.sg

ICLR 2021

$$\mathcal{L}_{\rm CE} = \frac{1}{N} \sum_{i=1}^{N} -\log p_{y_i},$$

 y_i is supervision signal.

 $\mathcal{L}_{\rm CL} = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{\exp(v_i \cdot v_i^+ / \tau)}{\exp(v_i \cdot v_i^+ / \tau) + \sum_{v_i^- \in V^-} \exp(v_i \cdot v_i^- / \tau)},$

No supervision signal.

• Feature spaces learned with different losses on long-tailed datasets.

- Whether the feature spaces learned by unsupervised Contrastive Loss (CL) is balanced?
- Benefits of balanced feature spaces?
- How to learn **balanced** and **discriminative** feature space?

- •Whether the feature spaces learned by unsupervised Contrastive Loss is **balanced**?
- •Benefits of balanced feature spaces?
- How to learn balanced and discriminative feature spaces?

Whether CL is balanced?

Balancedness metric

A feature space **V** is balanced if the representations {vi} from different classes within it have similar degrees of linear separability.

the accuracy of a linear classifier

$$\beta(V) \triangleq \frac{1}{C^2} \sum_{i,j}^{C} \exp\left(-\frac{|a_i - a_j|^2}{\sigma}\right), \text{ where } a_j = \frac{\#\{v_i | \hat{y}_i = j, y_i = j, v_i \in V\}}{\#\{v_i | y_i = j, v_i \in V\}}.$$
 (3)

C is number of classes, σ is a fixed parameter.

This metric achieves its maximum when all the class-wise accuracies are equal, i.e., there being no separability bias of the learned representations to any class.

metric
$$\beta$$
 \propto Balanced

Whether CL is balanced?

• The model trained with the **unsupervised contrastive loss** generates a more **balanced** feature space.

What are the **benefits** from a **balanced** model for recognition?

•Whether the feature spaces learned by unsupervised Contrastive Loss is **balanced**?

•Benefits of balanced feature spaces?

How to learn balanced and discriminative feature spaces?

Benefits of balanced feature spaces?

- Out-of-distribution generalization (open-set)
- Cross-domain and cross-task generalization

Benefits of balanced feature spaces?

- Out-of-distribution generalization (open-set)
- Cross-domain and cross-task generalization

Balance VS generalization?

 $\begin{array}{cc} \mathsf{CL} & \times \\ \mathsf{CE} & \sqrt{} \end{array}$

More balanced representation models tend to generalize better for recognizing unseen classes.

Benefits of balanced feature spaces?

- Out-of-distribution generalization (open-set)
- Cross-domain and cross-task generalization

Table 1: Results on Places365, VOC and COCO. AP₅₀ is the default metric for VOC, while AP^{bb} and AP^{mk} denote the bounding-box and mask AP for COCO respectively. Black / gray numbers correspond to results of the representation models trained on ImageNet-LT / ImageNet respectively. See appendix for complete results.

	cross-domain	cross-task			
	Places365 (Top1)	VOC (AP ₅₀)	COCO (APbb)	COCO (AP ^{mk})	
CE	38.50/46.06	76.45 / 81.26	38.13 / 40.08	33.29 / 34.85	
CL	41.24/46.16	78.19 / 82.28	39.67 / 40.41	34.73 / 35.14	
$\Delta_{\text{CL,CE}}$	+2.74 / +0.10	+1.64 / +0.02	+1.54 / +0.33	+1.44 / +0.29	

• The generalization performance not simply stem from using **self-supervised pre-training**, but indeed come from learning more **balanced** feature spaces.

Benefit : generalization

- •Whether the feature spaces learned by unsupervised Contrastive Loss is **balanced**?
- •Benefits of balanced feature spaces?
- How to learn balanced and discriminative feature spaces?

$$\mathcal{L}_{\rm CE} = \frac{1}{N} \sum_{i=1}^{N} -\log p_{y_i},$$

 y_i is supervision signal.

 $\mathcal{L}_{\rm CL} = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{\exp(v_i \cdot v_i^+ / \tau)}{\exp(v_i \cdot v_i^+ / \tau) + \sum_{v_i^- \in V^-} \exp(v_i \cdot v_i^- / \tau)},$

No supervision signal.

 $\mathcal{L}_{CE} = \frac{1}{N} \sum_{i=1}^{N} -\log p_{y_i}, \qquad y_i \text{ is supervision signal.}$ $\mathcal{L}_{CL} = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{\exp(v_i \cdot v_i^+ / \tau)}{\exp(v_i \cdot v_i^+ / \tau) + \sum_{v_i^- \in V^-} \exp(v_i \cdot v_i^- / \tau)},$

No supervision signal.

Supervised contrastive learning (SCL) :

• SCL uses all the instances from the same class to construct the positive pairs, which cannot avoid the dominance of head classes.

K-POSITIVE CONSTRASTIVE LOSS

Contrastive Learning have **limited** capability of **semantic discrimination**, enen two instances from the **same** class are forced to be apart from each other in the learned feature space.

$$\mathcal{L}_{\text{KCL}} = \frac{1}{N(k+1)} \sum_{i=1}^{N} \sum_{\substack{v_j^+ \in \{\tilde{v}_i\} \cup V_{i,k}^+ \\ \downarrow V_{i,k}}} -\log \frac{\exp(v_i \cdot v_j^+ / \tau)}{\exp(v_i \cdot \tilde{v}_i / \tau) + \sum_{v_j \in V_i} \exp(v_i \cdot v_j / \tau)}, \quad (4)$$

Draws **k** instances from the same class to form the **positive sample set** $V_{i,k}^+$, instead of only using its augmentation.

k brings two benefits:

- It uses the label information to learn **discriminative** representations.
- It uses the same number of instances (i.e., k) for all the classes, which **balances** the representations.

The difference with supervised contrastive learning (SCL) :

• SCL uses all the instances from the same class to construct the positive pairs, which cannot avoid the dominance of head classes.

- We are the **first** to study self-supervised contrastive learning on imbalanced datasets.
- We are the first to reveal that the model trained by contrastive learning can learn balanced feature spaces.
- Our empirical analysis proves that learning balanced feature spaces benefits the generalization of representation models.
- We develop the k-positive contrastive learning (KCL) method to learn balanced and discriminative feature representations.

Experiments

南京航空航天大學 Nanjing University of Aeronautics and Astronautics

• Experiments on ImageNet-LT(left) and iNaturalist(right).

Table 2: ImageNet-LT results

Table 3: iNaturalist 2018 results

Method	Many	Medium	Few	All
OLTR (Liu et al., $2019)^a$	35.8	32.3	21.5	32.2
Joint (SL-1) (Kang et al., 2020) τ -norm (Kang et al., 2020)	64.9 56.6	35.2 44.2	6.8 27.4	42.5 46.7
cRT (Kang et al., 2020)	58.8	44.0	26.1	47.3
FCL	61.4	47.0	28.2	49.8
KCL	61.8	49.4	30.9	51.5
			-	

^{*a*}Reproduced by re-running their code with ResNet50.

Method	Top1
CB-Focal (Cui et al., 2019)	61.1
LDAM (Cao et al., 2019)	64.6
LDAM+DRW (Cao et al., 2019)	68.0
cRT (Kang et al., 2020)	65.2
τ -norm (Kang et al., 2020)	65.6
BBN (Zhou et al., 2020)	66.3
FCL	66.4
KCL	68.6

Experiments

• Experiments on feature space balancedness(left) and class-wise accuracy.

Experiments

Pre-training representation models for downstream tasks.

- Out-of-distribution (OOD) Generalization(Open-set).
- Cross-domain and cross-task generalization.

Table 4: *OOD generalization results (top-1 accuracy) on balanced datasets.* We use the *source* classes of origininal ImageNet to learn representation network (ResNet50), and use the *target* classes and *all* classes respectively to learn linear classifiers for evaluation.

		Split-overlap		Split-independent		
	source	target	all	source	target	all
CE	81.2	70.7	67.2	82.8	50.3	62.4
CL	67.0	60.1	58.3	68.2	54.8	58.2
KCL	81.4	74.8 (+4.1)	70.8 (+3.6)	83.2	58.1 (+3.3)	67.2 (+4.8)

Table 5: Comparison of different representation learning methods for the downstream tasks.

	repr	VOC (AP ₅₀)	COCO (AP ^{bb})	COCO (AP ^{mk})
SL	76.6	81.26	40.08	34.85
MoCo	60.6	81.28	40.41	35.15
KCL	76.8	82.32	40.79	35.45

