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I Background

We extend existing multi-label losses to this setting and constrain the number of expected positive labels

during training :

L. An effective method for this setting could allow for signiﬁcantly reduced annotations costs for future

datasets.

2. Multi-class datasets may have images that actuaﬂy contain more than one class. For instance, the ilNaturalist

dataset has many images of insects on plants, but only one is annotated as the true class.

3. It is of scientific interest to understand how well multi-label classifiers can be made to perform at the

minimal limit of supervision.



I Background

Our experiments show that training with a single positive label per image allows us to
drastically reduce the amount of supervision required to train multi-label image
classifiers, while only incurring a tolerable drop in classification performance
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I Background

For Fully Observed Labels :
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For Partially Observed Labels :
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Positive Only Labels :
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I Methods

Sum of labels: L
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pseudo-negative sampling:
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Label Smoothing :
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Positive Regularization :
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I Methods

Online Estimation of Unobserved Labels :

jointly train the label estimator g(-; ¢) and the image classifier f(-;6)

We write the estimated labelsas: Y c [()j 1]N><L

the stop-gradient function

Z Lpcn( n;Sg‘(F’n))+ Lepr(Fp,Zp)
’

the label estimator g(X; @)

The Lgcp term encourages the image classifier predictions Fg to match the estimated labels Y5,
while the Lgpp term pushes Fg to correctly predict known positives and respect the expected
number of positives per image.

update 6 while assuming that ¢ is fixed update ¢ while assuming 0 is fixed

1 t
L (Fp|Yp)+IL(Yp|Fp)
2

LroLe(Fp,Yg) =



I Experiments

Multi-label test set mean average precision (MAP) for different multi-label losses on four different
image classification datasets.

We present results for two scenarios: (i) training a linear classifier on fixed features and (ii) fine-tuning
the entire network end-to-end.

For losses labeled with “Linearlnit.” we freeze the weights of the backbone network for the initial
epochs of training and then fine-tune the entire network end-to-end for the remaining epochs.

Linear Fine-Tuned
Loss Labels Per Image VOCl12 COCO NUS CUB | VOCI2 COCO NUS CUB
LBcE All Pos. & All Neg. 86.7 70.0 50.7  29.1 89.1 75.8 52.6  32.1
LBCE-LS All Pos. & All Neg. 87.6 70.2 51.7 293 90.0 76.8 535 326
LiuN 1 Pos. & All Neg. 86.4 67.0 490 194 87.1 70.5 469 213
Ly 1 Pos. & 1 Neg. 82.6 60.8 43.6 16.1 83.2 59.7 42.9 17.9
LN 1 Pos. & 0 Neg. 84.2 62.3 46.2 17.2 85.1 64.1 42.0 19.1
LAN—_LS 1 Pos. & 0 Neg. 85.3 64.8 48.5 154 86.7 66.9 449 17.9
LWAN 1 Pos. & 0 Neg. 84.1 63.1 458 17.9 80.5 64.8 46.3  20.3
LEPR 1 Pos. & 0 Neg. 83.8 62.6 46.4  18.0 85.5 63.3 46.0  20.0
LROLE 1 Pos. & 0 Neg. 86.5 66.3 49.5 16.2 87.9 66.3 43.1 15.0
Lan_1s +LinearInit. 1 Pos. &0 Neg. - - - - 86.5 69.2 50.5 16.6
Lrore ~+LinearInit. | 1 Pos. & 0 Neg. - - - - 88.2 69.0 51.0 16.8




I Experiments

36 .- Loss VOC12 COCO NUS CUB
LAN 83.8 63.8 49.3 16.8
84 - LAN-LS 86.9 65.4 49.7 17.4
LRoLE 90.3 69.5 56.0 19.6
% 82
=
80 - Training set MAP for multi-label predictions evaluated
—* LroLE with respect to the full ground truth labels. These values
78 - — ﬁAN measure how well each method recovers the true
e training labels despite being trained with one positive
76 L - label per image.
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I Experiments

£AN Frequency £ROLE Frequency

1 Distribution of predicted probabilities for
unobserved positives when training with a
1075 107" ingle positive per image for COCO. Each
column represents a normalized histogram
and white pixels indicate a frequency of
zero. Training with Ly g (right) results in
S _,  therecovery of a significant number of the
10 10 - :
unlabeled positives as evident by the
majority of the probability correctly being
con- centrated at 1.0 (top right) by the end
of training. L,y (left) does not exhibit the
: T s 102 0 same behavior.
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