

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers

John Guibas^{3*}, Morteza Mardani^{1,3*}, Zongyi Li^{1,2}, Andrew Tao¹, Anima Aanandkumar^{1,2}, Bryan Catanzaro¹ NVIDIA¹, California Institute of Technology², Stanford University³

Compared with the sota transformers

Figure 1: Parameter count and mIoU for Segformer, Swin, and other models at different scales. AFNO consistently outperforms other mixers (see Section 5.7).

MetaFormer and Token Mixer

Channel

MLP

Norm

(+)

Pooling

Norm

Input

Emb.

PoolFormer

(Ours)

Global Filter Networks (GFN)

Shortcomings:

- 1. lacks adaptivity and expressiveness at high resolutions since the parameter count grows with the sequence size
- 2. no channel mixing is involved in 2

Fourier neural operator

Definition 4 (Fourier Neural Operator). For the continuous input $X \in D$ and kernel κ , the kernel integral at token s is found as

$$\mathcal{K}(X)(s) = \mathcal{F}^{-1} \big(\mathcal{F}(\kappa) \cdot \mathcal{F}(X) \big)(s) \quad \forall s \in D,$$

Modification

Figure 2: The multi-layer transformer network with FNO, GFN, and AFNO mixers. GFNet performs elementwise matrix multiplication with separate weights across channels (k). FNO performs full matrix multiplication that mixes all the channels. AFNO performs block-wise channel mixing using MLP along with softthresholding. The symbols h, w, d, and k refer to the height, width, channel size, and block count, respectively.

```
def AFNO(x)
                                              x = Tensor[b, h, w, d]
bias = x
                                              W_1, W_2 = ComplexTensor[k, d/k, d/k]
                                              b_1, b_2 = ComplexTensor[k, d/k]
x = RFFT2(x)
x = x.reshape(b, h, w//2+1, k, d/k)
x = BlockMLP(x)
x = x.reshape(b, h, w//2+1, d)
                                              def BlockMLP(x):
x = SoftShrink(x)
                                                x = MatMul(x, W_1) + b_1
x = IRFFT2(x)
                                                 x = ReLU(x)
                                                 return MatMul(x, W_2) + b_2
 return x + bias
```

Figure 3: Pseudocode for AFNO with adaptive weight sharing and adaptive masking.

Modification: Block-Diagonal Structure and Weight Sharing (答) 南京航空航天大學

 $\tilde{z}_{m,n} = \mathrm{MLP}(z_{m,n}) = W_2 \sigma(W_1 z_{m,n}) + b$

Modification: Soft-Thresholding

Images are inherently sparse in the Fourier domain, and most of the energy is concentrated around low frequency modes.

Thus, one can adaptively mask the tokens according to their importance towards the end task.

$$\tilde{z}_{m,n}^{(\ell)} = W_{m,n}^{(\ell)} z_{m,n}^{(\ell)}, \quad \ell = 1, \dots, k$$
$$\downarrow \\ \min \|\tilde{z}_{m,n} - W_{m,n} z_{m,n}\|^2 + \lambda \|\tilde{z}_{m,n}\|_1$$

$$ilde{z}_{m,n} = S_{\lambda}(W_{m,n}z_{m,n}) \qquad S_{\lambda}(x) = \operatorname{sign}(x)\max\{|x| - \lambda, 0\}$$
 $ilde{z}_{m,n} = \operatorname{MLP}(z_{m,n}) = W_{2}\sigma(W_{1}z_{m,n}) + b$

Experiments

ImageNet-1k inpainting

Backbone	Mixer	Params	GFLOPs	Latency(sec)	SSIM	PSNR(dB)
ViT-B/4	Self-Attention	87M	357.2	1.2	0.931	27.06
ViT-B/4	LS	87M	274.2	1.4	0.920	26.18
ViT-B/4	GFN	87M	177.8	0.7	0.928	26.76
ViT-B/4	AFNO (ours)	87M	257.2	0.8	0.931	27.05

Table 2: Inpainting PSNR and SSIM for ImageNet-1k validation data. AFNO matches the performance ofSelf-Attention despite using significantly less FLOPs.

Few-shot segmentation

Backbone	Mixer	Params	GFLOPs	LSUN-Cats	ADE-Cars	CelebA-Faces
ViT-B/4	Self-Attention	87M	357.2	35.57	49.26	56.91
ViT-B/4	LS	87M	274.2	20.29	29.66	41.36
ViT-B/4	GFN	87M	177.8	34.52	47.84	55.21
ViT-B/4	AFNO (ours)	87M	257.2	35.73	49.60	55.75

Table 3: Few-shot segmentation mIoU for AFNO versus alternative mixers. AFNO surpasses Self-Attention for 2/3 datasets while using less flops.

Cityscapes segmentation

Backbone	Mixer	Params	Total GFLOPs	Mixer GFLOPs	mIoU
Segformer-B3/4	SA	45M	N/A	825.7	N/A
Segformer-B3/4	Efficient SA	45M	380.7	129.9	79.7
Segformer-B3/4	LS	45M	409.1	85.0	80.5
Segformer-B3/4	GFN	45M	363.4	2.6	80.4
Segformer-B3/4	AFNO-100% (ours)	45M	440.0	23.7	80.9
Segformer-B3/4	AFNO-25% (ours)	45M	429.0	12.4	80.4

Table 4: mIoU and FLOPs for Cityscapes segmentation at 1024×1024 resolution. Note, both the mixer and total FLOPs are included. For GFN and AFNO, the MLP layers are the bottleneck for the complexity. Also, AFNO-25% only keeps 25% of the low frequency modes, while AFNO-100% keeps all the modes. Results for self-attention cannot be obtained due to the long sequence length in the first few layers.

ImageNet-1k classification

Backbone	Mixer	Params	GFLOPs	Top-1 Accuracy	Top-5 Accuracy
ViT-S/4	LS	16M	15.8	80.87	95.31
ViT-S/4	GFN	16M	6.1	78.77	94.4
ViT-S/4	AFNO (ours)	16M	15.3	80.89	95.39

Table 5: ImageNet-1K classification efficiencyy-accuracy trade-off when the input resolution is 224×224 .

Experiments

Ablation studies

Backbone	Mixer	Parameter Count	PSNR	CelebA-Faces mIoU
ViT-XS/4	FNO	16M	24.8	39.27
ViT-XS/4	AFNO [Non-Adaptive Weights]	16M	25.1	44.04
ViT-XS/4	AFNO [Hard Thresholding 35%]	16M	23.58	34.17
ViT-XS/4	AFNO	16M	25.69	49.49

Table 6: Ablations for AFNO versus FNO, AFNO without adaptive weights, and hard thresholding. Results are on inpainting pretraining with 10% of ImageNet along with few-show segmentation mIoU on CelebA-Faces. Hard thresholding only keeps 35% of low frequency modes. AFNO demonstrates superior performance for the same parameter count in both tasks.

Figure 5: Spectral clustering of tokens for different token mixers. From top to bottom, it shows the input and the layers 2, 4, 6, 8, 10 for the inpainting pretrained model.

Thanks