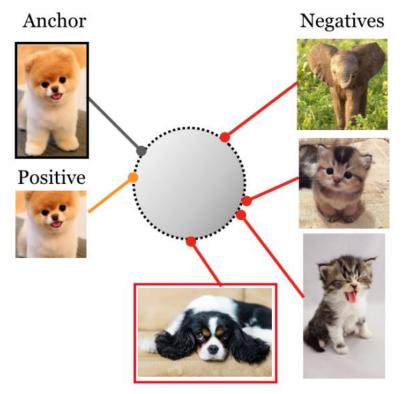
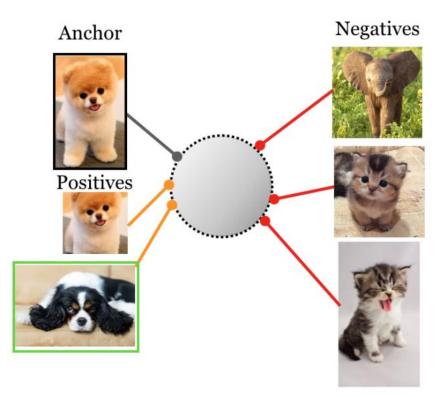
<u>Multi-Objective Interpolation Training for</u> <u>Robustness to Label Noise</u>

Diego Ortego, Eric Arazo, Paul Albert, Noel E. O'Connor and Kevin McGuinness Insight Centre for Data Analytics, Dublin City University (DCU) {diego.ortego, eric.arazo}@insight-centre.org

introduction



Self Supervised Contrastive



Supervised Contrastive

Robustness to label noise is usually pursued by identifying noisy samples to:

- 1. reduce their contribution in the loss
- 2. correct their label
- 3. abstain their classification
- 4. regularizing label noise information in DNN weights
- 5. small sets of correctly labeled data

directly learning image representations rather than a class mapping

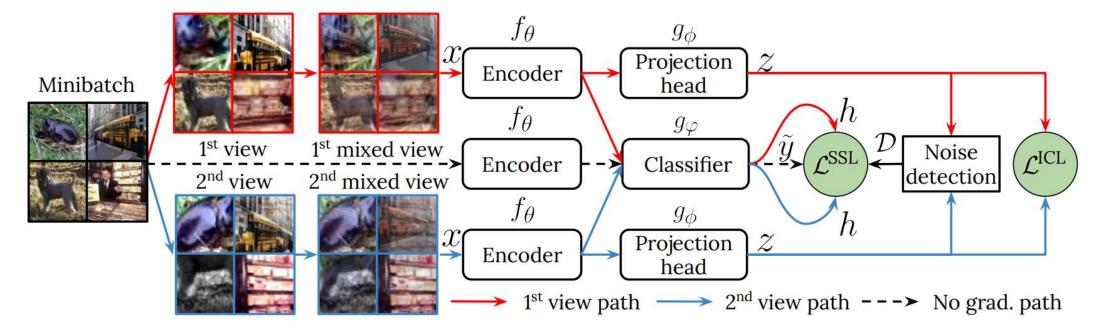


Figure 1. Multi-Objective Interpolation Training (MOIT) for improved robustness to label noise. We interpolate samples and impose the same interpolation in the supervised contrastive learning loss \mathcal{L}^{ICL} and the semi-supervised classification loss \mathcal{L}^{SSL} that we jointly use during training. Label noise detection is performed at every epoch to enable semi-supervised learning and its result is used after training to fine-tune the encoder and classifier to further boost performance.

per-sample loss

对比损失

$$\mathcal{L}_{i}(z_{i}, y_{i}) = \frac{1}{2N_{y_{i}} - 1} \sum_{j=1}^{2N} \mathbb{1}_{i \neq j} \mathbb{1}_{y_{i} = y_{j}} P_{i,j}$$

$$P_{i,j} = -\log \frac{\exp\left(z_i \cdot z_j/\tau\right)}{\sum_{r=1}^{2N} \mathbb{1}_{r \neq i} \exp\left(z_i \cdot z_r/\tau\right)}$$

$$x_i = \lambda x_a + (1 - \lambda) x_b, \quad \lambda \in [0, 1] \sim \text{Beta}(\alpha, \alpha)$$

 x_i denotes the training sample that combines two minibatch samples x_a and x_b

$$\mathcal{L}_{i}^{MIX} = \lambda \mathcal{L}_{i} \left(z_{i}, y_{a} \right) + \left(1 - \lambda \right) \mathcal{L}_{i} \left(z_{i}, y_{b} \right)$$

unless a large minibatch is used during training, few positive and negative samples are selected, which negatively affects the training process

Memory bank

 \mathcal{L}_{i}^{MEM} contrasts the 2N samples with the M memory samples, thus extending the number of positive and negative samples

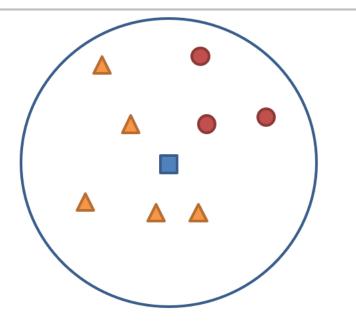
$$\mathcal{L}^{ICL} = \mathcal{L}^{MIX} + \mathcal{L}^{MEM}$$

 \mathcal{L}_{i}^{MEM} Similar to \mathcal{L}_{i}^{MIX}

Label noise detection

estimating a class probability distribution from the representation zi by doing a k-nearest neighbor (k-NN) search:

$$p(c \mid x_i) = \frac{1}{K} \sum_{\substack{k=1\\x_k \in \mathcal{N}_i}}^K \mathbb{1}_{y_k \neq c},$$



However, the labels y might be noisy, thus biasing the estimation of p. We, therefore, estimate a corrected distribution \hat{p} using:

$$\hat{p}(c \mid x_i) = \frac{1}{K} \sum_{\substack{k=1\\x_k \in \mathcal{N}_i}}^{K} \mathbb{1}_{\hat{y}_k \neq c},$$
$$\hat{y} = \arg\max_c p(c \mid x)$$

$$d_i = -y_i^T \log\left(\hat{p}\right),$$

$$\mathcal{D}_c = \left\{ (x_i, y_i) : d_i \le \gamma_c \right\},\,$$

Semi-supervised learning

We learn the classifier by performing semi-supervised learning where samples in \mathcal{D} are considered as labeled and the remaining samples as unlabeled.

$$\mathcal{L}_{i}^{SSL} = -\lambda \tilde{y}_{a}^{T} \log\left(h_{i}\right) - \left(1 - \lambda\right) \tilde{y}_{b}^{T} \log\left(h_{i}\right)$$

where the pseudo-label \tilde{y}_a (\tilde{y}_b) for x_a (x_b) is estimated as

$$\tilde{y}_a = \begin{cases} y_a, & x_a \in \mathcal{D}_c \\ \bar{h}_a, & x_a \notin \mathcal{D}_c \end{cases},$$
(11)

where \bar{h}_a is the softmax prediction for image x_a without data augmentation. The final Multi-Objective Interpolation Training (MOIT) optimizes the loss:

$$\mathcal{L}^{MOIT} = \mathcal{L}^{ICL} + \mathcal{L}^{SSL}.$$
 (12)

Classification refinement

$$\mathcal{L}_{i}^{MOIT+} = -\lambda \left[\left(\delta y_{a} + (1-\delta) \, \tilde{y}_{a} \right)^{T} \log \left(h_{i} \right) \right] - (1-\lambda) \left[\left(\delta y_{b} + (1-\delta) \, \tilde{y}_{b} \right)^{T} \log \left(h_{i} \right) \right],$$

experiment

		Symmetric		Asymmetric		
	0%	40%	80%	10%	40%	
SCL	72.66	58.32	41.00	71.11	68.00	
ICL	75.30	66.38	53.60	74.34	72.04	
MOIT	75.76	67.42	55.58	74.86	72.60	

Table 2. Weighted k-NN evaluation in CIFAR-100.

Table 3. Classification accuracy for different noise detection strategies and K values for 40% asymmetric noise in CIFAR-100.

	K	5	10	25	50	100	150	200	250	300	350
k-NN (p)	Acc.	59.42	61.74	64.84	66.10	67.18	67.42	67.46	67.68	67.14	66.94
k-NN (\hat{p})	Acc.	62.28	65.30	68.58	70.56	71.16	71.22	71.24	71.42	70.98	70.80

experiment

Table 6. Performance in CIFAR-10 with symmetric and asymmetric noise. (*) Denotes that we have run the algorithm.

Table 7. Performance in CIFAR-100 with symmetric and asymmetric noise. (*) Denotes that we have run the algorithm.

		Symm	etric		Asym	metric		Avg.			Symm	etric		Asym	metric		Avg.
	0%	20%	40%	80%	10%	30%	40%			0%	20%	40%	80%	10%	30%	40%	
CE	93.85	78.93	55.06	33.09	88.81	81.69	76.04	72.50	CE	74.34	58.75	42.92	8.29	68.10	53.28	44.46	50.02
Mix [53]	95.96	84.76	66.07	20.38	93.30	83.26	77.74	74.50	Mix [53]	77.90	66.40	52.20	13.21	72.40	57.63	48.07	55.40
DB [1]	79.18	93.82	92.26	15.53	89.58	92.20	91.20	79.11	DB [1]	64.79	69.11	62.78	45.67	67.09	58.59	47.44	59.35
DMI [49]	93.88	88.33	83.24	43.67	91.11	91.16	83.99	82.20	DMI [49]	74.44	58.82	53.22	20.30	68.15	54.15	46.20	53.61
PCIL [50]	93.89	92.72	91.32	55.99	93.14	92.85	91.57	87.35	PCIL [50]	77.75	74.93	68.49	25.41	76.05	59.29	48.26	61.45
DRPL [34]	94.08	94.00	92.27	61.07	95.50	92.98	92.84	88.96	DRPL [34]	71.84	71.16	72.37	52.95	72.03	69.30	65.69	67.91
DMix* [28]	94.27	95.12	94.11	35.36	93.77	92.47	90.04	85.02	DMix* [28]	67.41	71.39	70.83	49.52	69.53	68.28	50.99	63.99
ELR* [30]	95.49	94.49	92.56	38.23	95.25	94.66	92.88	86.22	ELR* [30]	78.01	75.90	72.89	36.83	77.08	74.61	71.25	69.51
MOIT	95.17	92.88	90.55	70.53	93.50	93.19	92.27	89.73	MOIT	75.83	72.78	67.36	45.63	75.49	73.34	71.55	68.85
MOIT+	95.65	94.08	91.95	75.83	94.23	94.31	93.27	91.33	MOIT+	77.07	75.89	70.88	51.36	77.43	75.13	74.04	71.69

Ablation study

Table 5. Ablation study for MOIT and MOIT+ in CIFAR-100. A: Asymmetric, S: Symmetric, SSL: semi-supervised learning, M: memory, B: Balanced clean set, r-t C: Re-training classifier, s-DA: strong data augmentation.

	S-40%	A-40%
(MOIT) w/o SSL	62.82	53.73
(MOIT) w/o M	66.10	68.88
(MOIT) w/o B	66.28	69.58
MOIT	66.58	71.42
(MOIT+) w/o r-t C	69.54	73.32
(MOIT+) w/ s-DA	67.98	71.90
MOIT+	70.68	73.58

experiment

Table 8. Performance evaluation on controlled web noise in mini-ImageNet. We run all methods.

		0%	20%	40%	80%
Mix [53]	Best	61.18	57.76	52.88	38.32
	Last	58.96	54.60	50.40	37.32
DMix [28]	Best	57.80	55.86	55.44	41.12
	Last	55.84	50.30	50.94	35.42
ELR [30]	Best	63.12	61.48	57.32	41.68
	Last	57.38	58.10	50.62	41.68
MOIT	Best	67.18	64.82	61.76	46.40
	Last	64.72	63.14	60.78	45.88
MOIT+	Best	68.28	64.98	62.36	47.80
	Last	67.82	63.10	61.16	46.78

thanks