

Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge Feng Zhu Dapeng Chen Rui Zhao Hongsheng Li Multimedia Laboratory The Chinese University of Hong Kong {yxge@link,hsli@ee}.cuhk.edu.hk dapengchenxjtu@gmail.com

NIPS 2020

Object Re-identification (Re-ID)

Identify the probe object from multiple cameras

Object Re-identification (Re-ID) -- Domain Gaps

- City $A \rightarrow City B$
- Synthetic → Real-world

Previous UDA Methods on Object Re-ID

Unsupervised domain adaptation(UDA) re-ID : transfer the knowledge from source domain to target domain

Exist methods generally follow a two-stage scheme:

- 1. Supervised pre-train on source domain
- 2. Unsupervised fine-tuning on the target domain(generate pseudo-label by clustering)

(1) Pre-training stage:

Limitations:

- 1. The accurate source-domain ground-truth labels are valuable but were ignored during target-domain training.
- 2. Discard difficult but valuable clustering outlier samples from being used for training.

SpCL framework

source-domain class centroids $\{w\}$ target-domain all instance features $\{v_1, \dots, v_{n^t}\}$ target-domain cluster centroids $\{c\}$ target-domain un-clustered instance features $\{v_1, \dots, v_{n_o^t}\}$

Propose a self-paced contrastive learning framework:

 $x^{s}, x_{c}^{t}, x_{o}^{t}: \{ 源域, 目标域簇, 目标域离群点 \} 样本 w_k 源域类别k的中心 (取平均)$ $<math>c_k$ 目标域第k个簇的中心 v_k 目标域的离群样本k

Unified Contrastive Learning Loss:

Given a general feature vector $\mathbf{f} = f_{\theta}(x), x \in \mathbb{X}^s \cup \mathbb{X}^t_c \cup \mathbb{X}^t_o$, our unified contrastive loss is

$$\mathcal{L}_{m{f}} = -\lograc{\exp\left(\langlem{f},m{z}^+
angle/ au
ight)}{\sum_{k=1}^{n^s}\exp\left(\langlem{f},m{w}_k
angle/ au
ight) + \sum_{k=1}^{n^t_c}\exp\left(\langlem{f},m{c}_k
angle/ au
ight) + \sum_{k=1}^{n^t_o}\exp\left(\langlem{f},m{v}_k
angle/ au
ight)},$$

Update Memory -- Target-domain Instance Features

Cluster Reliability Criterion

Cluster independence*

We preserve independent clusters with compact data points whose $\mathcal{R}_{indep} > \alpha$ and $\mathcal{R}_{comp} > \beta$, while the remaining data are treated as un-clustered outlier instances.

Algorithm

Algorithm 1 Self-paced contrastive learning algorithm on domain adaptive object re-ID

Require: Source-domain labeled data X^s and target-domain unlabeled data X^t ; **Require:** Initialize the backbone encoder f_{θ} with ImageNet-pretrained ResNet-50; **Require:** Initialize the hybrid memory with features extracted by f_{θ} ; **Require:** Temperature τ for Eq. (1), momentum m^s for Eq. (3), momentum m^t for Eq. (4); for n in $[1, num_epochs]$ do Group X^t into X_c^t and X_o^t by clustering $\{v\}$ from the hybrid memory with the independence Eq. (5) and compactness Eq. (6) criterion; Initialize the cluster centroids $\{c\}$ with Eq. (2) in the hybrid memory; for each mini-batch $\{x_i^s\} \subset X^s$, $\{x_i^t\} \subset X^t$ do 1: Encode features $\{f_i^s\}, \{f_i^t\}$ for $\{x_i^s\}, \{x_i^t\}$ with f_{θ} ; 2: Compute the unified contrastive loss with $\{f_i^s\}, \{f_i^t\}$ by Eq. (1) and update the encoder f_{θ} by back-propagation; 3: Update source-domain related class centroids $\{w\}$ in the hybrid memory with $\{f_i^s\}$ and momentum m^s (Eq. (3)); 4: Update target-domain related cluster centroids $\{c\}$ with updated $\{w\}$ in the hybrid memory (Eq. (2)); end for end for

$$\mathcal{L}_{\boldsymbol{f}} = -\log \frac{\exp\left(\langle \boldsymbol{f}, \boldsymbol{z}^{+} \rangle / \tau\right)}{\sum_{k=1}^{n^{s}} \exp\left(\langle \boldsymbol{f}, \boldsymbol{w}_{k} \rangle / \tau\right) + \sum_{k=1}^{n^{t}} \exp\left(\langle \boldsymbol{f}, \boldsymbol{c}_{k} \rangle / \tau\right) + \sum_{k=1}^{n^{t}} \exp\left(\langle \boldsymbol{f}, \boldsymbol{v}_{k} \rangle / \tau\right)}, \quad (1) \qquad \boldsymbol{v}_{i} \leftarrow m^{t} \boldsymbol{v}_{i} + (1 - m^{t}) \boldsymbol{f}_{i}^{t}, \quad (4)$$

$$oldsymbol{c}_k = rac{1}{|\mathcal{I}_k|} \sum_{oldsymbol{v}_i \in \mathcal{I}_k} oldsymbol{v}_i,$$
 (2)

$$egin{aligned} \mathcal{R}_i \leftarrow \mathcal{M} \ \mathcal{O}_i + (1 - \mathcal{M}) egin{aligned} \mathcal{J}_i, \ \mathcal{R}_{ ext{indep}}(oldsymbol{f}_i^t) &= rac{|\mathcal{I}(oldsymbol{f}_i^t) \cap \mathcal{I}_{ ext{loose}}(oldsymbol{f}_i^t)|}{|\mathcal{I}(oldsymbol{f}_i^t) \cup \mathcal{I}_{ ext{loose}}(oldsymbol{f}_i^t)|} \in [0,1], \end{aligned}$$

$$\boldsymbol{w}_{k} \leftarrow m^{s} \boldsymbol{w}_{k} + (1 - m^{s}) \cdot \frac{1}{|\mathcal{B}_{k}|} \sum_{\boldsymbol{f}_{i}^{s} \in \mathcal{B}_{k}} \boldsymbol{f}_{i}^{s}, \qquad (3) \qquad \mathcal{R}_{\text{comp}}(\boldsymbol{f}_{i}^{t}) = \frac{|\mathcal{I}(\boldsymbol{f}_{i}^{t}) \cap \mathcal{I}_{\text{tight}}(\boldsymbol{f}_{i}^{t})|}{|\mathcal{I}(\boldsymbol{f}_{i}^{t}) \cup \mathcal{I}_{\text{tight}}(\boldsymbol{f}_{i}^{t})|} \in [0, 1], \qquad (6)$$

(5)

Table 2: Comparison with state-of-the-art methods on unsupervised domain adaptation for object re-ID. (*) the implementation is based on the authors' code.

(a) $Real \rightarrow real$ adaptation on person re-ID datasets. (b) $Synthetic \rightarrow real$ adaptation on person re-ID datasets.

Methods		Market-1501→MSMT17				Methods		PersonX→MSMT17			
		mAP	top-1	top-5	top-10	- Methods		mAP	top-1	top-5	top-10
PTGAN [46]	CVPR'18	2.9	10.2	-	24.4	MMT-dbscan [11]*	ICLR'20	17.7	39.1	52.6	58.5
ECN [62]	CVPR'19	8.5	25.3	36.3	42.1	Ours		22.7	47.7	60.0	65.5
SSG [10]	ICCV'19	13.2	31.6	-	49.6	Methods		$PersonX \rightarrow Market-1501$			
ECN++ [63]	TPAMI'20	15.2	40.4	53.1	58.7			mAP	top-1	top-5	top-10
MMT-kmeans [11]	ICLR'20	22.9	49.2	63.1	68.8	MMT-dbscan [11]*	ICLR'20	71.0	86.5	94.8	97.0
MMCL [45]	CVPR'20	15.1	40.8	51.8	56.7		TCER 20	72.0	88.0	05.2	06.0
DG-Net++ [66]	ECCV'20	22.1	48.4	60.9	66.1	Ours		/3.8	ðð.U	95.5	90.9
D-MMD [31]	ECCV'20	13.5	29.1	46.3	54.1						
JVTC [23]	ECCV'20	20.3	45.4	58.4	64.3	(c) Real \rightarrow real and synthetic \rightarrow real adaptation on vehicle					
GPR [29]	ECCV'20	20.4	43.7	56.1	61.9	re-ID datasets			•		
NRMT [57]	ECCV'20	19.8	43.7	56.5	62.2	ie-iD datasets.					
MMT-dbscan [11]*	ICLR'20	<u>24.0</u>	<u>50.1</u>	<u>63.5</u>	<u>69.3</u>	_		VehicleID \rightarrow VeRi-776			
Ours		26.8	53.7	65.0	69.8	Methods		mAP	top-1	top-5	top-10
Methods		MSMT17→Market-1501				MMT-dbscan [11]*	ICLR'20	35.3	74.6	82.6	87.0
		mAP	top-1	top-5	top-10		ICER 20	38.0	90.4	86.8	89.6
MAR [52]	CVPR'19	40.0	67.7	81.9	-			30.9	Val. 1. V	00.0	07.0
PAUL [50]	CVPR'19	40.1	68.5	82.4	87.4	Methods			$\frac{\text{venicleX} \rightarrow \text{veKi-} / 6}{2}$		
CASCL [47]	ICCV'19	35.5	65.4	80.6	86.2			mAP	top-1	top-5	top-10
DG-Net++ [66]	ECCV'20	64.6	83.1	91.5	94.3	MMT-dbscan [11]*	ICLR'20	35.6	76.0	83.1	87.4
D-MMD [31]	ECCV'20	50.8	72.8	88.1	92.3	Ours		38.9	81.3	87.3	90.0
MMT-dbscan [11]*	ICLR'20	75.6	89.3	95.8	<u>97.5</u>						
Ours		77.5	89.7	96.1	97.6	_					

Our method could even **boost the source-domain performance**, while previous UDA methods (*e.g.* MMT) inevitably forget the source-domain knowledge. Our method also outperforms state-of-the-art supervised re-ID methods (*e.g.* DG-Net, OSNet), indicates that our method could be applied to **improve the supervised training by incorporating unlabeled data** without extra human labor.

Unlabeled target domain

 $\begin{array}{l} \text{target-domain} \textit{ all instance features } \{v_1, \cdots, v_{n^t}\} \\ \text{target-domain} \textit{ un-clustered instance features } \{v_1, \cdots, v_{n^t_o}\} \\ \text{target-domain} \textit{ cluster centroids } \{c\} \end{array}$ $\begin{array}{l} \mathcal{L}_f = -\log \frac{\exp(\langle f, z^+ \rangle / \tau)}{\sum_{k=1}^{n^t_c} \exp(\langle f, c_k \rangle / \tau) + \sum_{k=1}^{n^t_o} \exp(\langle f, v_k \rangle / \tau)} \\ \end{array}$

Algorithm

Algorithm 2 Self-paced contrastive learning algorithm on unsupervised object re-ID

Require: Unlabeled data \mathbb{X}^t ;

Require: Initialize the backbone encoder f_{θ} with ImageNet-pretrained ResNet-50;

Require: Initialize the hybrid memory with features extracted by f_{θ} ;

Require: Temperature τ for Eq. (1), momentum m^t for Eq. (4);

for n in [1, num_epochs] do

Group \mathbb{X}^t into \mathbb{X}^t_c and \mathbb{X}^t_o by clustering $\{v\}$ from the hybrid memory with the independence Eq. (5) and compactness Eq. (6) criterion; Initialize the cluster centroids $\{c\}$ with Eq. (2) in the hybrid memory;

for each mini-batch $\{x_i^t\} \subset \tilde{\mathbb{X}}^t$ do

1: Encode features $\{f_i^t\}$ for $\{x_i^t\}$ with f_{θ} ;

2: Compute the unsupervised-version unified contrastive loss with $\{f_i^t\}$ as below and update the encoder f_{θ} by back-propagation;

$$\mathcal{L}_{m{f}} = -\log rac{\exp\left(\langlem{f},m{z}^+
ight
angle/ au
ight)}{\sum_{k=1}^{n_c^t}\exp\left(\langlem{f},m{c}_k
ight
angle/ au
ight) + \sum_{k=1}^{n_o^t}\exp\left(\langlem{f},m{v}_k
ight
angle/ au$$

3: Update instance features $\{v\}$ in the hybrid memory with $\{f_i^t\}$ and momentum m^t (Eq. (4));

4: Update cluster centroids $\{c\}$ with updated $\{v\}$ in the hybrid memory (Eq. (2));

end for

end for

$$\mathcal{L}_{\boldsymbol{f}} = -\log \frac{\exp\left(\langle \boldsymbol{f}, \boldsymbol{z}^{+} \rangle / \tau\right)}{\sum_{k=1}^{n^{s}} \exp\left(\langle \boldsymbol{f}, \boldsymbol{w}_{k} \rangle / \tau\right) + \sum_{k=1}^{n^{t}_{c}} \exp\left(\langle \boldsymbol{f}, \boldsymbol{c}_{k} \rangle / \tau\right) + \sum_{k=1}^{n^{t}_{c}} \exp\left(\langle \boldsymbol{f}, \boldsymbol{v}_{k} \rangle / \tau\right)}, \quad (1) \qquad \boldsymbol{v}_{i} \leftarrow m^{t} \boldsymbol{v}_{i} + (1 - m^{t}) \boldsymbol{f}_{i}^{t}, \quad (4)$$

$$\boldsymbol{c}_{k} = \frac{1}{|\mathcal{I}_{k}|} \sum_{\boldsymbol{v}_{i} \in \mathcal{I}_{k}} \boldsymbol{v}_{i}, \tag{2}$$

$$\mathcal{R}_{\text{indep}}(\boldsymbol{f}_{i}^{t}) = \frac{|\mathcal{I}(\boldsymbol{f}_{i}^{t}) \cap \mathcal{I}_{\text{loose}}(\boldsymbol{f}_{i}^{t})|}{|\mathcal{I}(\boldsymbol{f}_{i}^{t}) \cup \mathcal{I}_{\text{loose}}(\boldsymbol{f}_{i}^{t})|} \in [0, 1],$$
(5)

$$\boldsymbol{w}_{k} \leftarrow m^{s} \boldsymbol{w}_{k} + (1 - m^{s}) \cdot \frac{1}{|\mathcal{B}_{k}|} \sum_{\boldsymbol{f}_{i}^{s} \in \mathcal{B}_{k}} \boldsymbol{f}_{i}^{s}, \qquad (3) \qquad \mathcal{R}_{\text{comp}}(\boldsymbol{f}_{i}^{t}) = \frac{|\mathcal{I}(\boldsymbol{f}_{i}^{t}) \cap \mathcal{I}_{\text{tight}}(\boldsymbol{f}_{i}^{t})|}{|\mathcal{I}(\boldsymbol{f}_{i}^{t}) \cup \mathcal{I}_{\text{tight}}(\boldsymbol{f}_{i}^{t})|} \in [0, 1], \qquad (6)$$

THANKS