

Adversarial Masking for Self-Supervised Learning

Yuge Shi¹ N. Siddharth² Philip H.S. Torr¹ Adam R. Kosiorek³

ICML 2022

Supervised Learning vs Unsupervised Learning

Unsupervised learning

Background

Self-Supervised Learning (SSL)

—— a method of **unsupervised** learning.

① Context Based *

It can be classified to

- ② Temporal Based
 - ③ Contrastive Based *

Self Supervised Contrastive

Motivation

Masked Image Model (MIM)

—— (1) Context Based

Blue solid box : Other works (Random Mask)

Red solid box : This work (Learned Mask)

Masked Language Model

Masked Image Models

Figure 1. Self-supervised language, and vision, models learn representations by imputing data removed by masking. **BERT**: random word masks; **Context encoder**: random, fix-shaped mask; **BEiT**: random 'blockwise' masking; **MAE**: randomly mask out 75% of the image; **ADIOS**: multiple masks (N=3) generated by an adversarially trained masking model, post-processed with fully connected conditional random fields (Krähenbühl & Koltun, 2011).

 \boldsymbol{z}

inference

Figure 2. ADIOS Architecture.

Adversarial Inference-Occlusion Self-supervision (ADIOS)

m

occlusion

The two models are learnt by solving for

$$\mathcal{I}^{\star}, \mathcal{M}^{\star} = \arg\min_{\mathcal{I}} \max_{\mathcal{M}} \mathcal{L}(\boldsymbol{x}; \mathcal{I}, \mathcal{M}).$$

Inference model \mathcal{I}

An interesting question for auto-encoding \mathcal{I} is : where does the imputation happen?

Given these scenarios, ① is clearly best suited for representation learning, as it requires the encoder to reason about the missing parts based on observed context, beyond just extracting image features.

Inference model \mathcal{I}

Our objective can thus be written as

$$\mathcal{L}_{\text{ENC}}(\boldsymbol{x}; \mathcal{I}, \mathcal{M}) \!=\! \mathcal{D}(\boldsymbol{z}, \boldsymbol{z}^{\boldsymbol{m}}) \!=\! \mathcal{D}(\mathcal{I}(\boldsymbol{x}), \mathcal{I}(\boldsymbol{x} \odot \mathcal{M}(\boldsymbol{x}))) -$$

In Contrastive Based SSL Framework, we take SimCLR as an example

$$\mathcal{L}_{\text{SimCLR}}(\boldsymbol{x}; \mathcal{I}) = \log rac{\exp(\mathcal{D}(\boldsymbol{z}_i^A, \boldsymbol{z}_i^B))}{\sum_{i \neq j} \exp(\mathcal{D}(\boldsymbol{z}_i^A, \boldsymbol{z}_j^B))}$$

So, we can write the SimCLR-ADIOS objective as

Suffer from "collapse" !

Occlusion model \mathcal{M}

We find that the simplest setup suffices, and we use **U-Net** as the backbone, which is commonly used for semantic segmentation, a pixelwise SoftMax layer to generate N > 1 masks.

Parnel 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

ADIOS (
$$\mathcal{M}$$
 and \mathcal{I})
The two models are learnt by solving for
 $\mathcal{I}^*, \mathcal{M}^* = \arg \min_{\mathcal{I}} \max_{\mathcal{M}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}^{(n)}(x; \mathcal{I}, \mathcal{M})$.
Some mask m_n occludes everything, with the other { $M_{\backslash n}$ masks not occluding anything.
apply mask m_1
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2

ADIOS (\mathcal{M} and \mathcal{I})

Final objective :

$$\mathcal{I}^{\star}, \mathcal{M}^{\star} = \arg \min_{\mathcal{I}} \max_{\mathcal{M}} \frac{1}{N} \sum_{n=1}^{N} \left(\mathcal{L}^{(n)}(\boldsymbol{x}; \mathcal{I}, \mathcal{M}) - \lambda p_n \right)$$
Randomly sample one from N generated masks.
Lightweight ADIOS :
$$\mathcal{I}^{\star}, \mathcal{M}^{\star} = \arg \min_{\mathcal{I}} \max_{\mathcal{M}} \left(\mathcal{L}^{(k)}(\boldsymbol{x}; \mathcal{I}, \mathcal{M}) - \lambda \frac{1}{N} \sum_{n=1}^{N} p_n \right)$$
where $k \sim \text{Uniform} (\{1, 2..., N\})$.

Linear evaluation and k-NN

Table 1. Top-1 classification accuracy (k-NN and Linear Probing) on Imagenet100-S, STL10. Improvements of ADIOS that are more than 3% are marked in bold.

Models using **ADIOS** consistently *outperform* their respective SSL baselines beyond the margin of error.

Method	ImageNet100-S			STL10		
	k-NN	Linear		k-NN	Linear	
Backbone: Vi	T-Tiny					
SimCLR	40.0 (±0.28)	$40.2~(\pm 0.47)$		72.9 (±0.27)	76.0 (±0.33)	
+ADIOS	42.0 (±1.32)	43.1 (±0.71)		73.4 (±0.28)	79.7 (±0.88)	
SimSiam	35.2 (±1.12)	36.8 (±1.82)		66.7 (±0.10)	$67.5~(\pm 0.02)$	
+ADIOS	38.8 (±2.73)	40.1 (±0.59)		67.9 (±0.75)	$68.8(\pm 0.25)$	
BYOL	38.1 (±0.61)	39.7 (±0.50)		71.9 (±0.12)	72.1 (±0.32)	
+ADIOS	47.1 (±0.35)	49.2 (±0.94)		74.5 (±0.58)	75.9 (±0.63)	
Backbone: R	esNet-18					
SimCLR	54.1 (±0.09)	55.1 (±0.15)		83.7 (±0.48)	85.1 (±0.12)	
+ADIOS	55.1 (±0.43)	55.9 (±0.21)		85.8 (±0.10)	86.1 (±0.36)	
SimSiam	58.6 (±0.31)	59.5 (±0.31)		84.3 (±0.81)	84.8 (±0.72)	
+ADIOS	61.0 (±0.29)	60.4 (±0.19)		84.6 (±0.35)	86.4 (±0.24)	
BYOL	56.2 (±0.79)	56.3 (±0.10)		83.6 (±0.09)	84.3 (±0.13)	
+ADIOS	60.2 (±0.82)	61.4 (±0.14)		84.8 (±0.19)	85.6 (±0.24)	

Lightweight ADIOS and clustering

The results in Tab. 2 show that this much cheaper model also achieves impressive performance.

The results in Tab. 3 show that **ADIOS** improves the performance of baseline SSL methods on all three metrics for both datasets.

Table 2. Top-1 classification accuracy of linear probing on ImageNet100. Improvements of more than 3% are marked in bold.

SimCLR	+ADIOS-s	SimSiam	+ADIOS-s	BYOL	+ADIOS-s
77.5 (±0.10)	76.1 (±0.50)	76.4 (±0.07)	77.2 (±0.09)	74.3 (±0.16)	80.8 (±0.60)

Table 3. Clustering performance on Imagenet100-S, STL10.

Method	Backbone	Metrics					
	Duchtoone	$FMI\uparrow$	ARI ↑	NMI \uparrow			
Dataset: Ima	geNet100-S						
SimCLR	ViT-Tiny	0.105 (±1e-3)	0.095 (±1e-3)	0.432 (±3e-3)			
+ADIOS	ViT-Tiny	0.120 (±1e-3)	0.110 (±1e-3)	0.442 (±4e-3)			
SimSiam	ViT-Tiny	0.077 (±9e-4)	0.067 (±2e-3)	0.389 (±3e-3)			
+ADIOS	ViT-Tiny	0.098 (±1e-2)	0.087 (±9e-4)	0.425 (±3e-3)			
BYOL	ViT-Tiny	0.098 (±8e-3)	0.088 (±8e-3)	0.418 (±4e-3)			
+ADIOS	ViT-Tiny	0.132 (±3e-3)	0.123 (±1e-3)	0.458 (±4e-3)			
SimCLR	ResNet18	0.151 (±3e-3)	0.135 (±4e-3)	0.515 (±6e-3)			
+ADIOS	ResNet18	0.175 (±1e-3)	0.161 (±4e-3)	0.539 (±3e-3)			
SimSiam	ResNet18	0.167 (±2e-3)	0.136 (±6e-3)	0.553 (±8e-3)			
+ADIOS	ResNet18	0.179 (±1e-3)	0.161 (±1e-3)	0.553 (±1e-3)			
BYOL	ResNet18	0.170 (±1e-3)	0.158 (±3e-3)	0.530 (±4e-3)			
+ADIOS	ResNet18	0.179 (±6e-4)	0.156 (±2e-3)	0.561 (±2e-3)			
Dataset: STL	.10						
SimCLR	ViT-Tiny	0.349 (±5e-3)	0.269 (±6e-3)	0.410 (±2e-3)			
+ADIOS	ViT-Tiny	0.351 (±4e-3)	0.271 (±8e-3)	0.417 (±6e-3)			
SimSiam	ViT-Tiny	0.296 (±3e-3)	0.177 (±1e-3)	0.341 (±4e-3)			
+ADIOS	ViT-Tiny	0.320 (±3e-3)	0.235 (±5e-3)	0.349 (±0e-0)			
BYOL	ViT-Tiny	0.349 (±5e-3)	0.269 (±5e-3)	0.410 (±5e-3)			
+ADIOS	ViT-Tiny	0.355 (±4e-2)	0.276 (±3e-3)	$0.422(\pm 4e-3)$			
SimCLR	ResNet18	0.338 (±2e-3)	0.166 (±9e-4)	0.512 (±5e-3)			
+ADIOS	ResNet18	0.437 (±6e-3)	0.309 (±9e-3)	0.585 (±8e-3)			
SimSiam	ResNet18	0.392 (±2e-3)	0.242 (±7e-3)	0.552 (±3e-3)			
+ADIOS	ResNet18	0.412 (±8e-3)	0.249 (±7e-3)	0.558 (±2e-4)			
BYOL	ResNet18	0.429 (±5e-3)	0.328 (±9e-3)	0.525 (±8e-3)			
+ADIOS	ResNet18	0.508 (±6e-3)	$0.422 (\pm 1e-2)$	0.588 (±9e-3)			

ParNeC 模式识别与神经计算研究组 PAttern Recognition and NEural Computing

Transfer learning

Results show that **ADIOS** improves transfer learning performance on all four datasets, under both linear evaluation and fine-tuning.

We use **CIFAR-ResNet** for fine-tuning, however we have to use the original architecture for linear evaluation in order to use the pretrained weights, which leads to poor performance.

Table 4. Classification accuracy of transfer learning by re-training linear classifier only (*Lin.*) and fine-tuning (*F.T*). More than 3% improvements by ADIOS are marked in bold.

Method	CIFA	CIFAR10		CIFAR100		Flowers102		iNaturalist	
	Lin.	F.T.	Lin.	F.T.	Lin.	F.T.	Lin.	F.T.	
SimCLR	30.1	91.3	10.2	70.0	42.5	45.6	69.4	82.1	
+ADIOS	34.6	93.4	11.0	71.8	50.2	50.6	72.5	84.3	
SimSiam	35.3	92.4	13.2	65.0	38.7	55.0	72.3	85.0	
+ADIOS	39.3	94.3	13.3	71.0	44.9	59.0	75.9	86.2	
BYOL	29.9	88.0	13.3	52.3	49.1	58.6	72.7	85.1	
+ADIOS	39.2	90.4	14.0	62.0	51.7	60.1	73.1	85.7	
Scratch	-	85.5	-	49.8	-	30.6	-	73.8	

Robustness

The original figure's (**Orig.**) background is replaced by background from another image in the same class (**M.S.**), from a random image in any class (M.R.) or from an image in the next class (N.R.).

M.N.

Table 5. Accuracy on different variations of the backgrounds challenge, evaluating model robustness. Example variations in Fig. 7.

Our results show that all three **SSL-ADIOS** models outperform their respective baselines on all variations, demonstrating that **ADIOSlearned** representations are more robust to changes in both foreground and background.

Method	Variations							Orig.
	O.BB.	O.BT.	N.F.	O.F.	M.S.	M.R.	M.N.	0118
SimCLR	20.1	34.8	44.3	41.6	67.1	45.9	41.0	78.8
+ADIOS	20.7	36.7	45.5	43.5	68.0	47.9	43.7	79.1
SimSiam	29.5	39.1	43.8	52.1	69.9	43.9	40.8	78.4
+ADIOS	33.1	41.0	46.2	54.7	71.5	47.2	43.5	80.3
BYOL	25.9	38.4	46.0	51.6	71.3	45.6	42.7	79.8
+ADIOS	27.7	39.0	48.5	51.7	72.1	47.8	44.1	80.6
Avg. gain	+2.0	+1.4	+2.0	+1.5	+1.1	+2.5	+2.3	+1.0

(a) STL10, N = 6.

(b) CLEVR, N = 4.

(c) ImageNet100-S, N = 4.

Figure 8. Masks generated by ADIOS during training on each dataset. N denotes the number of masks. Top row: original image; Bottom row: generated masks, each color represents one mask.

Masking Schemes

(a) Ground-truth object masks

(b) Foreground-background masks

(c) Ground-truth box-shaped masks

(d) Shuffled ground-truth masks

(e) MAE (He et al., 2021) masks

(f) BEiT (Bao et al., 2021) masks

Table 6. Top-1 classification accuracy on ImageNet100-S and STL10 under different masking schemes, averaged over three runs of SimCLR, SimSiam and BYOL respectively. Best results for each metric in bold.

	Mask type	Condition	Dataset				
in a set of po			ImageNet100-S	STL10			
	Random	e) MAE f) BEiT	43.7 (±0.43) 46.4 (±0.67)	78.4 (±0.91) 80.7 (±1.00)			
	Learned	ADIOS	59.2 (±2.92)	86.0 (±0.40)			
	None	-	57.0 (±2.27)	84.7 (±0.40)			

Table 7. Multi-label classification on CLEVR under different masking schemes, averaged over three runs of SimCLR, SimSiam and BYOL respectively. Best results for each metric in bold.

Mask type	Condition	Metric					
		F1-macro ↑	F1-micro ↑	F1-weighted \uparrow			
	a) G.T.	0.373 (±7e-3)	0.401 (±2e-4)	0.460 (±1e-2)			
Semantic	b) FG./BG.	0.346 (±7e-3)	0.365 (±2e-4)	0.402 (±1e-3)			
	c) Box	0.347 (±2e-4)	0.391 (±3e-5)	0.457 (±5e-2)			
	d) Shuffle	0.332 (±6e-3)	0.360 (±8e-4)	0.418 (±1e-3)			
Random	e) MAE	0.309 (±8e-4)	0.336 (±3e-4)	0.391 (±9e-4)			
	f) BEiT	0.274 (±1e-3)	0.307 (±2e-4)	0.395 (±7e-3)			
Learned	ADIOS	0.377 (±2e-3)	0.385 (±9e-4)	0.451 (±1e-3)			
None	-	0.352 (±9e-3)	0.359 (±2e-4)	0.373 (±2e-5)			

Thanks

To Smooth or Not? When Label Smoothing Meets Noisy Labels

Jiaheng Wei¹ Hangyu Liu² Tongliang Liu³ Gang Niu⁴ Masashi Sugiyama⁴⁵ Yang Liu¹

ICML 2022

Noisy labels

In multi-class classification task

Background

Label smoothing (LS)

$$\mathbf{y}^{\mathrm{LS},r} = (1-r) \cdot \mathbf{y} + \frac{r}{K} \cdot \mathbf{1}$$

 \boldsymbol{K} is the number of label classes

r is the smooth rate in the range of [0, 1]

LS helps with improving robustness when learning with noisy labels. (from 'Does label smoothing mitigate label noise?)

But ...

The advantage of LS vanishes in a high label noise regime!

Figure 1. Optimal smooth rates on UCI datasets with different label noise rates (possible to have tied smooth rates).

ParNel 模式识别与神经计算研究组

Generalized label smoothing (GLS)

$$\mathbf{y}_i^{\mathrm{LS},r} = (1-r) \cdot \mathbf{y}_i + \frac{r}{K} \cdot \mathbf{1} \quad r \in [0,1]$$
extend
$$\mathbf{y}_i^{\mathrm{GLS},r} := (1-r) \cdot \mathbf{y}_i + \frac{r}{K} \cdot \mathbf{1} \quad r \in (-\infty, 1)$$

$$H(p,q) = -\sum_x p(x)\,\log q(x)$$

 ${\rm loss}\; 1.2 \cdot \ell({\bf f}(x),0) - 0.1 \cdot \ell({\bf f}(x),1) - 0.1 \cdot \ell({\bf f}(x),2)$

Table 1. Test accuracies of LS, VL, NLS on clean and noisy UCI Heart, Splice datasets, with best two smooth rates highlighted (green: NLS; red: VL or LS). We adopt the two independent sample T-test (5 non-negative smooth rates V.S. the last 5 rows of reported negative smooth rates) to verify the overall performance comparisons between VL/LS and NLS. p-value is highlighted in green if NLS generally returns a higher accuracy (i.e., t-value< 0) than VL/LS, otherwise, in red. Results on more benchmark datasets are given in Appendix D.

Smooth Pata			UCI-Heart					UCI-Splice		
	$e_i = 0$	$e_i = 0.1$	$e_i = 0.2$	$e_{i} = 0.3$	$e_{i} = 0.4$	$e_i = 0$	$e_i = 0.1$	$e_{i} = 0.2$	$e_{i} = 0.3$	$e_i = 0.4$
r = 0.8	0.885	0.853	0.836	0.820	0.738	0.980	0.946	0.919	0.856	0.760
r = 0.6	0.902	0.836	0.820	0.836	0.738	0.978	0.939	0.913	0.869	0.778
r = 0.4	0.885	0.853	0.836	0.820	0.771	0.978	0.948	0.922	0.885	0.797
r = 0.2	0.902	0.853	0.820	0.803	0.754	0.978	0.948	0.919	0.878	0.800
r = 0.0	0.902	0.853	0.820	0.820	0.771	0.976	0.948	0.926	0.876	0.806
r = -0.4	0.869	0.836	0.803	0.853	0.754	0.961	0.956	0.928	0.880	0.817
r = -0.6	0.869	0.836	0.820	0.853	0.721	0.961	0.956	0.926	0.880	0.819
r = -1.0	0.885	0.869	0.803	0.853	0.754	0.956	0.954	0.932	0.889	0.819
r = -2.0	0.885	0.869	0.820	0.853	0.787	0.952	0.946	0.935	0.898	0.830
r = -4.0	0.885	0.869	0.853	0.885	0.820	0.946	0.943	0.939	0.911	0.830
r = -8.0	0.869	0.869	0.885	0.853	0.853	0.943	0.946	0.939	0.915	0.845
$r_{\rm opt} =$	[0.0, 0.6]	[-8.0, -1.0]	-8.0	-4.0	-8.0	0.8	[-0.6, -0.4]	[-8.0, -4.0]	-8.0	-8.0
<i>p</i> -value =	0.020	0.136	0.549	0.002	0.243	0.001	0.332	0.002	0.015	0.005

Thanks