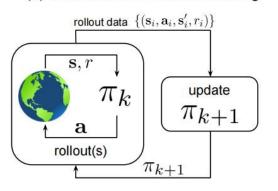


Offline RL Policies Should be Trained to be Adaptive

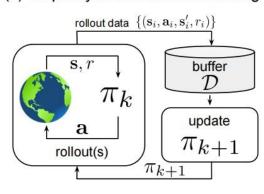
Dibya Ghosh ¹ Anurag Ajay ² Pulkit Agrawal ² Sergey Levine ¹

Background

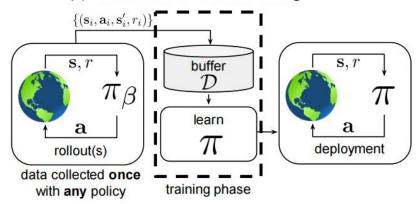
(a) online reinforcement learning



(b) off-policy reinforcement learning



(c) offline reinforcement learning



Notions

 $MDP: \mathcal{M} = (S, A, R, P, \rho, \gamma)$

Value function : V(s)

Action value function : Q(s,a)

 $\text{Objective function of } \pi: J(\pi_{\theta}) \!= \mathbb{E}_{s_0 \sim \rho(s_0), a \sim \pi_{\theta}(\cdot \mid s_0)} \big[Q^{\pi_{\theta}}(s_0, a_0) \big] \!= \mathbb{E}_{\pi_{\theta}} \Big[\sum\nolimits_{t \, \geq \, 0} \gamma^{\,t} r(s_t, a_t) \Big]$

Motivation

Uncertainty in offline RL represents agent's estimation of environment

Static datasets of offline RL ⇒ the learned policy is often conservative

The learned policy penalizes actions with high uncertainty to avoid OOD actions

Use an ensemble of Q-networks -

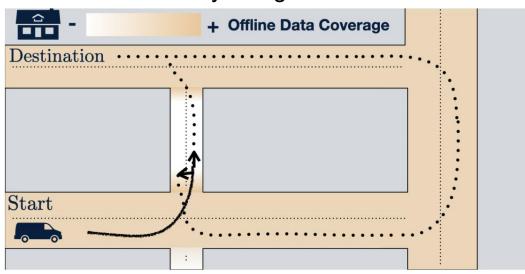
$$J(heta) \! = \! \mathbb{E}_{s,a \sim D} igg[\mathbb{E}_{Q^{\pi} \sim \mathcal{P}_D(\cdot)} ig[Q^{\pi}(s,a) ig] \! - \! lpha \! U_{\mathcal{P}_D} ig(\mathcal{P}_D(\cdot) ig) igg]$$

take the minimum Q value while update Q-networks

But it remains unclear whether conservative objectives are the best approach for designing offline RL algorithms.

Motivation

City navigation

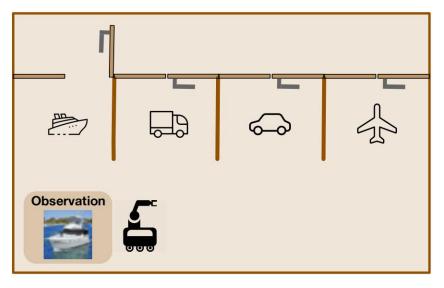


Efficiency first : the side street

Conservative policy: the large road

Adaptive: try the side street and reverts to the large road if unknown circumstances arise

Locked doors



Standard offline RL: error prediction of image will try to open a locked door forever

Adaptive: try another door

Offline RL Policies Should be Trained to be Adaptive

Analysis

Insufficient data coverage -----

Many potential MDPs behave identically in the dataset, but differ on out-of-sample states and actions.

The dataset does not uniquely identify M^* of the true environment So the dataset induces epistemic uncertainty about the identity of the MDP

From a Bayesian perspective:

Given a prior distribution over MDPs $P(\mathcal{M})$, then $P(\mathcal{M}|\mathcal{D}) \propto P(\mathcal{D})P(\mathcal{D}|\mathcal{M})$

Because the learned policy will be deployed into the true MDP, so the Bayesian objective is

$$J_{\mathrm{Bayes}}(\pi) := \mathbb{E}_{\mathcal{M} \sim P(\mathcal{M}|\mathcal{D})}[J_{\mathcal{M}}(\pi)] \iff ext{the expected return of epistemic POMDP}$$
 where $J_{\mathcal{M}}(\pi) = \mathbb{E}_{\pi}\Big[\sum_{t \geqslant 0} \gamma^t r(s_t, a_t)\Big]$

Analysis

POMDP is defined by
$$(\bar{S}, A, \mathcal{O}, \bar{P}, O, r, \rho, \gamma)$$

The epistemic POMDP:
$$J_{\mathcal{M}_{po}}(\pi) = J_{\text{Bayes}}(\pi) \; ; \; \overline{s} := (s, \mathcal{M}) \; ; \; \overline{P}((s', \mathcal{M}') | (s, \mathcal{M}), a)$$

$$O((s, \mathcal{M})) = s \; ; \; r((s, \mathcal{M}), a) = r_{\mathcal{M}}(s, a) \; ; \; \rho((s, \mathcal{M})) = P(\mathcal{M} | \mathcal{D}) \rho_{\mathcal{M}}(s)$$

Use the parlance of partial observability to describe how uncertainty induced by the offline dataset affects policy learning and evaluation process under a Bayesian viewpoint.

Proposition A.1 (Sub-optimality of Markovian policies and optimality of adaptiveness). Let $n \in \mathbb{N}$. There are offline RL problem instances $(\mathcal{D}, p(\mathcal{M}))$ with n-state MDPs where the adaptive Bayes-optimal policy achieves $J_{Bayes}(\pi_{adaptive}^*) = -2n$ but the highest performing Markovian policy achieves return of a magnitude worse: $J_{Bayes}(\pi_{markov}^*) \leq -\frac{1}{2}n^2$.

Method

The posterior distribution $P(\mathcal{M}|\mathcal{D})$ is unacquirable, so use $P(Q_{\mathcal{M}}^{\pi}|\mathcal{D})$ instead

(Because the value function $Q_{\mathcal{M}}^{\pi}$ entangles the necessary information about both dynamics and rewards for a given policy)

Difine relative MDP belief
$$b(h)(\mathcal{M}) = \frac{P(\mathcal{M}|h,\mathcal{D})}{P(\mathcal{M}|\mathcal{D})}$$

Traditional policy gradient $\nabla_{\theta} J_{\mathcal{M}}(\pi_{\theta}) = \mathbb{E}_{h \sim \pi} [\nabla_{\theta} \mathbb{E}_{a \sim \pi_{\theta}(\cdot|h)}[Q_{\mathcal{M}}^{\pi}(h,a)]]$

 $\text{Bayesian policy gradient} \ \ \nabla_{\theta}J_{Bayes}(\pi_{\theta}) = \mathbb{E}_{h \sim \pi}[\nabla_{\theta}\,\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s(h), b(h))}[\mathbb{E}_{M \sim P(\mathcal{M}\mid \mathcal{D})}[\,b\,(h\,)(\mathcal{M})\,Q_{\mathcal{M}}^{\,\pi}(h,a\,)]]$

The update of Q function : $Q_{\mathcal{M}}^{\pi}(s, \boldsymbol{b}, a) = r(s, a) + \gamma \mathbb{E}_{\substack{s' \sim \mathcal{M} \\ a \sim \pi}} \left[Q_{\mathcal{M}}^{\pi}(s', \boldsymbol{b'}, a) \right] \quad (5)$

where b' := BeliefUpdate(b, (s, a, r, s)) is the new relative MDP belief after witnessing (s, a, r, s'),

BeliefUpdate($\boldsymbol{b}, (s, a, r, s)$)(\mathcal{M}) $\propto p_{\mathcal{M}}(r, s'|s, a)\boldsymbol{b}(\mathcal{M})$ (6)

$$\boldsymbol{b}(h)\left(\mathcal{M}\right) = \frac{P(\mathcal{M}|h,\mathcal{D})}{P(\mathcal{M}|\mathcal{D})} = \frac{P(h,\mathcal{D}|\mathcal{M})P(\mathcal{M})}{P(\mathcal{M}|\mathcal{D})P(h,\mathcal{D})} = \frac{P(h|\mathcal{D},\mathcal{M})P(\mathcal{D})P(\mathcal{M})}{P(\mathcal{M}|\mathcal{D})P(h|\mathcal{D})P(h|\mathcal{D})} = \frac{P(h|\mathcal{D},\mathcal{M})P(\mathcal{M})}{P(\mathcal{M}|\mathcal{D})P(h|\mathcal{D})}$$

Because $P(\mathcal{M}|\mathcal{D}), P(\mathcal{M})$ is fixed for different \mathcal{M} , and for different h, $P(h|\mathcal{D})$ is the same or similar

$$oldsymbol{b}(h')\left(\mathcal{M}\right) \propto P(h'|\mathcal{D},\mathcal{M}) = P_{\mathcal{M}}\left(s',r|s,a\right)P(h|\mathcal{D},\mathcal{M})$$

$$\Rightarrow$$
 $oldsymbol{b}(h')\left(\mathcal{M}
ight)\!pprox\!P_{\mathcal{M}}\left(s',r|s,a
ight)\!oldsymbol{b}(h)\left(\mathcal{M}
ight)$

Without model, replace $P_{\mathcal{M}}(s',r|s,a)$ by $\log \hat{P}_{\mathcal{M}_k}(s',r|s,a) = -\left|\hat{Q}_k(s,m{b},a) - (r+\gamma \mathbb{E}_{a'\sim\pi}[\hat{Q}_k(s',m{b},a')])\right|$

Finally, the actor loss and critic loss are:

$$\mathcal{L}_{ ext{critic}}(\hat{Q}_k) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}, oldsymbol{b} \sim p(oldsymbol{b})} \Big[\Big(\hat{Q}_k(s,oldsymbol{b},a) - \Big(r + \gamma \mathbb{E}_{a' \sim \pi(\cdot \mid s',oldsymbol{b}')} \Big[\hat{Q}_k(s',oldsymbol{b}',a') \Big] \Big) \Big)^2 \Big]$$

$$\mathcal{L}_{ ext{actor}}(\pi) \! = \! - \mathbb{E}_{s \sim \mathcal{D}, oldsymbol{b} \sim p(oldsymbol{b})} \! \left[\mathbb{E}_{a \sim \pi(\cdot \mid s, oldsymbol{b})} \! \left[\sum_{k} oldsymbol{b}_{k} \hat{Q}_{k}(s, oldsymbol{b}, a)
ight]
ight]$$

Method

Algorithm 1 Adaptive Policies with Ensembles of Value Functions (APE-V)

Receive input: dataset \mathcal{D} , number of ensemble members n

Initialize policy $\pi(\cdot|s, b) : \mathcal{S} \times \Delta_n \to \Delta(\mathcal{A})$

Initialize ensemble of value functions $\{\hat{Q}_1, \dots \hat{Q}_n\}$, where $\hat{Q}_k(s, \boldsymbol{b}, a) : \mathcal{S} \times \Delta_n \times \mathcal{A} \to \mathbb{R} \longrightarrow \boldsymbol{b}_0 = \left[\frac{1}{n} \cdots \frac{1}{n}\right]^T$ while π has not converged **do**

Sample transition $(s, a, r, s') \sim \mathcal{D}$ from dataset and possible belief $b \sim p(b)$

Approximate next-step belief b' = BeliefUpdate(b, (s, a, r, s')) using Equation 9

Optimize value functions to minimize TD error taking into account the updated belief $b \to b'$

$$\min \mathcal{L}(\hat{Q}_k) \coloneqq (\hat{Q}_k(s, \boldsymbol{b}, a) - (r + \gamma \mathbb{E}_{a' \sim \pi(\cdot|s', \boldsymbol{b'})}[\hat{Q}_k(s', \boldsymbol{b'}, a')]|))^2 \quad \forall k \in \{1, \dots n\}$$
(7)

Optimize adaptive policy $\pi(\cdot|s, b)$ to maximize **b**-weighted average of value functions

$$\max_{\pi(\cdot|s,\boldsymbol{b})} \mathbb{E}_{a_{\pi} \sim \pi} \left[\sum_{k} \boldsymbol{b}_{k} \hat{Q}_{k}(s,\boldsymbol{b},a_{\pi}) \right]$$
(8)

end while

Algorithm 2 APE-V Test-Time Adaptation

 $s_0 = \text{ENV.RESET}()$

Initialize belief vector to uniform: $\boldsymbol{b}_0 = \begin{bmatrix} \frac{1}{n}, \dots, \frac{1}{n} \end{bmatrix}^{\top}$

for environment step $t = 0, 1, \dots$ do

Sample action: $a_t \sim \pi(\cdot|s_t, \boldsymbol{b}_t)$

Act in environment: $r_t, s_{t+1} \leftarrow \text{ENV.STEP}(a_t)$

Update belief vector using new transition (Eq 9)

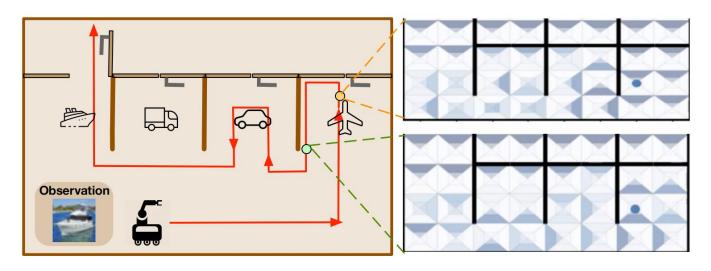
$$\boldsymbol{b}_{t+1} = \text{BeliefUpdate}(\boldsymbol{b}_t, (s_t, a_t, r_t, s_{t+1}))$$

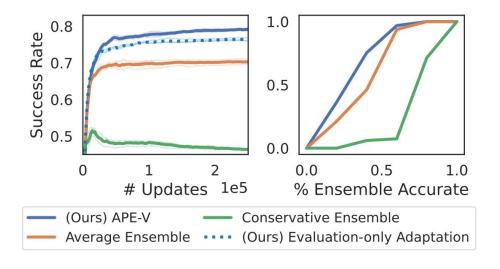
end for

BeliefUpdate(
$$\boldsymbol{b}, (s, a, r, s)$$
)(\mathcal{M}) $\propto p_{\mathcal{M}}(r, s'|s, a)\boldsymbol{b}(\mathcal{M})$

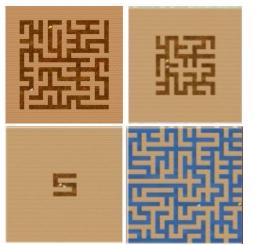
$$\log \hat{P}_{\mathcal{M}_k}(s',r|s,a) = - \left| \hat{Q}_k(s,oldsymbol{b},a) - (r + \gamma \mathbb{E}_{a'\sim\pi}[\hat{Q}_k(s',oldsymbol{b},a')])
ight|$$

Locked Doors with CIFAR10





Procgen Mazes



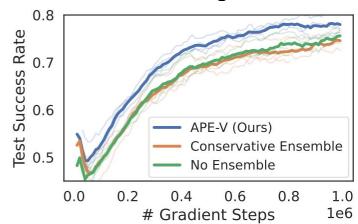


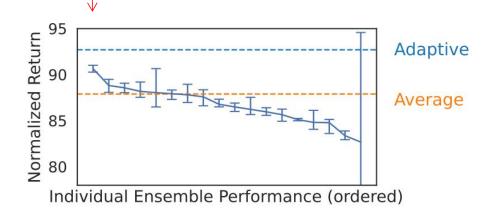
Table 2. Maze-solving success rates, averaged over 4 seeds.

	200 Trai	n Levels	1000 Train Levels		
	Train	Test	Train	Test	
No Ensemble	0.96 ± 0.02	$0.24 \pm .02$	0.93 ± 0.01	0.75 ± 0.03	
Conservative	0.96 ± 0.02	0.23 ± 0.02	0.93 ± 0.01		
APE-V	0.97 ± 0.00	0.31 ± 0.04	0.92 ± 0.01	0.79 ± 0.04	

D4RL benchmark

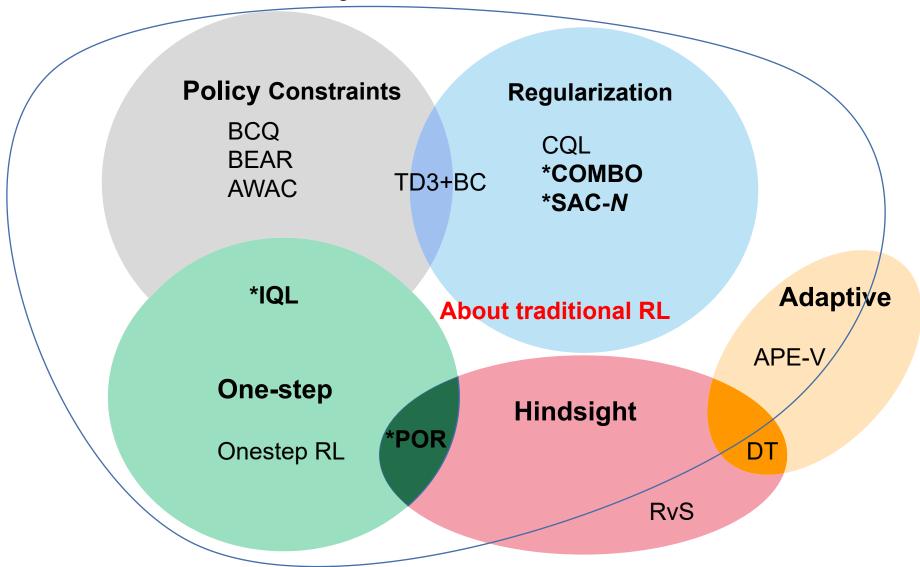
Task Name	ВС	SAC (Haarnoja et al., 2018)	REM (Agarwal et al., 2020)	CQL (Kumar et al., 2020)	IQL (Kostrikov et al., 2021b)	SAC- <i>N</i> (An et al., 2021)	APE-V
halfcheetah-random	2.2±0.0	29.7±1.4	-0.8±1.1	35.4	31.3±3.5	29.8±1.6	29.9±1.1
halfcheetah-medium	43.2 ± 0.6	55.2 ± 27.8	-0.8 ± 1.3	44.4	47.4 ± 0.2	67.5 ± 1.2	69.1 ± 0.4
halfcheetah-medium-expert	44.0 ± 1.6	28.4 ± 19.4	0.7 ± 3.7	62.4	95.0 ± 1.4	102.7 ± 1.5	$\textbf{101.4} \pm \textbf{1.4}$
halfcheetah-medium-replay	37.6 ± 2.1	0.8 ± 1.0	6.6 ± 11.0	46.2	44.2 ± 1.2	63.9 ± 0.8	64.6 ± 0.9
hopper-random	3.7 ± 0.6	9.9 ± 1.5	3.4 ± 2.2	10.8	5.3 ± 0.6	31.3 ± 0.0	$31.3 \pm 0.2x$
hopper-medium-expert	53.9 ± 4.7	0.7 ± 0.0	0.8 ± 0.0	111.0	96.9 ± 15.1	110.1 ± 0.3	105.72 ± 3.7
hopper-medium-replay	16.6 ± 4.8	7.4 ± 0.5	27.5 ± 15.2	48.6	94.7 ± 8.6	101.8 ± 0.5	98.5 ± 0.5
walker2d-random	1.3 ± 0.1	0.9 ± 0.8	6.9 ± 8.3	7.0	5.4 ± 1.7	16.3 ± 9.4	15.5±8.5
walker2d-medium	70.9 ± 11.0	-0.3 ± 0.2	0.2 ± 0.7	74.5	78.3 ± 8.7	87.9 ± 0.2	90.3 ± 1.6
walker2d-medium-expert	90.1±13.2	1.9 ± 3.9	-0.1 ± 0.0	98.7	109.1 ± 0.2	116.0 ± 6.3	110.0 ± 1.5
walker2d-medium-replay	20.3±9.8	-0.4 ± 0.3	12.5 ± 6.2	32.6	73.8 ± 7.1	78.7 ± 0.7	$\textbf{82.9} \pm \textbf{0.4}$

These tasks generally do not have data distributions that lead to multiple salient hypotheses



Adaptation within the episode indeed allows the policy to adapt to a better strategy than it may have started with.

Sota algorithms in offline RL



Thanks