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Can multi-label classification networks
know

what they don’t know?
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' Multi-label Classification

- ordinary supervised learning vs. multi-label learning

instance label instance

Ordinary supervised Learning Multi-label learning
(only one ground-truth label) (a series of labels)
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' Multi-label Classification
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' Out-of-distribution Detection (OOD)
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' Out-of-distribution Detection
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Figure 1: Out-of-distribution detection for multi-label classification networks. During inference time, input x is
passed through classifier f, and label-wise scores are computed for each label. OOD indicator scores are either
the[maximum-valued kcore (denoted by green outlines) or thefsum|of all scores. Taking the sum results in a
larger difference 1n scores and more separation between in-distribution and OOD inputs (denoted by red lines),
resulting in better OOD detection. Plots in the bottom right depict the probability densities of MaxLogit [1L3]]

versus JointEnergy (ours).




, Problem

OOD uncertainty estimation in the multi-label classification setting

estimate the joint likelihood using generative
models

combine label-wise energy over all labels




, Energy Function

a scoring function for OOD uncertainty estimation in the multi-class setting
fix) =X —+RBF

logits (softmax)

ny'i (x)

ijl £

by the’Boltzmann distribution
probability distribution :
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, Energy Function

from a energy-based perspective by viewing logit as energy function :

E(X, i) = - (%)

efv:i &) e~ E(x,y:) e—E(x,y:)

E:]- — . — r 1 = = — .
p(y: =1]x) S o) — | pui=11x) e B B0

\ J

free energy function :

E(x) = —logz o Sui (%), (2)




' Label-wise Free Energy

a standard pre-trained multi-label neural classifier

a logit output for the i-th class :

fyz’ (x) = h(x;0) 'wilsv

predictive probabilty :

label-wise free energy :
Ey,(x) = ~log(1 + e/u®),

Unfortunately does not capture uncertainty jointly across labels
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' Label-wise Free Energy
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Figure 2: Label-wise energy scores —F,, (x) distribution. The in-distribution classes (each per row) are a
subset from PASCAL-VOC (green). OOD test data is from ImageNet (gray), which is the same for all labels.
x-axis is in log scale for visibility.

Unfortunately does not capture uncertainty jointly across labels




' JointEnergy

consider joint uncertainty across labels :

K
J(Jlﬂt E

for OOD

out

ctxiry =

1n

if Eint(x) <[1,}-— energy threshold

if Ejuint(x) = T




' Dataset

in-distribution To evaluate the models trained on the in-
distribution datasets above, OOD :
MS-COCO,
NUS-WIDE Textures datasets

Table 3: Ablation study on the effect of aggregation methods: max vs summation. Values are AUROC.

D; MaxEnergy JointEnergy
MS-COCO 89.11 92.70
PASCAL-VOC 89.22 91.10

NUS-WIDE 83.58 88.30




' Results

The sensitivity analysis on T

the larger AOC, the better & 0.40- PASCAL-VOC
g —— COCO
- 010 —— NUS-WIDE
0.00 -

0. 02 04 06 08 1.0
False Positive Rate

Figure 3: AUROC curves for OOD detec-
tor obtained from three in-distribution multi-
label classification datasets.




' Results

Table 1: OOD detection performance comparison using [JointEnergy |vs.| competitive baselines, We use
DenseNet [19] to train on the in-distribution datasets. We use a subset of ImageNet classes as OOD test data, as
described in Section 4.1. All values are percentages. 1 indicates larger values are better, and | indicates smaller
values are better. Bold numbers are superior results. Description of baseline methods, additional evaluation
results on different OOD test data, and different architecture (e.g., ResNet [14]) can be found in the Appendix.

Din MS-COCO PASCAL-VOC NUS-WIDE
FPR95 / AUROC / AUPR

OOD Score i T { ¥

MaxLogit [15] 43.53" 89.11/93.74 45.06/89.22/83.14 56.46/83.58/94.32
MSP [16] 79.90/73.70/85.37 74.05/79.32/72.54 88.50/60.81/87.00
ODIN [28] 43.53/89.11/93.74 45.06/89.22/83.16 56.46/83.58/94.32
Mahalanobis [27] 46.86/88.59/93.85 41.74/88.65/81.12 62.67/84.02/95.25
LOF [3] 80.44/73.95/86.01 86.34/69.21/5893 85.21/67.75/89.61
Isolation Forest [31] 94.39/49.04/66.87 93.22/50.67/35.78 95.69/53.12/83.32
JointEnergy 33.48)92.70/96.25 41.01/91.10/86.33 48.98/88.30/96.40




' Results

Table 2: Ablation study on the effect of|summation |ﬁ::r prior approaches. We use DenseNet [19] to train on the
in-distribution datasets. We use ImageNet as fest data as described in Section 4.1. Note that Sum does not
apply to tree-based or KNN-based approaches (e.g., LOF and Isolation Forest).

Tk MS-COCO PASCAL NUS-WIDE
FPR95 / AUROC / AUPR

OOD Score Aggregation i 1 1
Logit Sum 6181/8039 R7.18/7268/6124 96.53/51,75/82.55
Prob Sum 89.32/94.40 38.57/86.53/79.10 50.84/83.82/95.15
“ODIN Sum 56.56/84.62/92.24 50.35/79.45/70.19 56.26/81.04/94.34
Mahalanobis Sum 53.43/87.52/93.35 44.43/87.76/79.86 69.05/80.46/94.09
LOF Sum N/A N/A N/A
Isolation Forest Sum N/A N/A N/A
JointEnergy (ours) Sum 33.48/92.70/96.25 41.01/91.10/86.33 48.98/88.30/ 96.40
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