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Introduction

Many problems are characterized by partial differential equations (PDEs) with the 
solution constrained by boundary conditions (BCs)

 commonly used BCs
① Dirichlet
② Neumann
③ Robin
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Introduction

Physics-Informed Neural Networks (PINNs)

Hard-Constraint Methods

ℒℱ convergeres faster than ℒℬ, leading to solutions which does not satisfy the BCs

hard to directly extend this method to cases of Robin BCs,  c         i is hard to obtain
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Methodology

Problem Setup

for each ��, � = 1, . . . , �, suitable boundary conditions (BCs) 

Dirichlet BC if ai ≡ 1; bi ≡ 0, a Neumann BC if ai ≡ 0; bi ≡ 1, and a Robin BC otherwise.

 at least ( �=1
� �� + �) terms

Reformulating PDEs via Extra Fields
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Methodology

carefully chosen basis B(x) 

A Unified Hard-Constraint Framework
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Methodology

why it works?

• lower derivatives result in less accumulation of back-propagation, and 
thus stabilize the training process

• reduce the number of loss terms, alleviating the unbalanced competition 
between loss terms

final loss function
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Experiments

mean absolute error (MAE) and mean absolute percentage error (MAPE) 
replace MAPE with weighted mean absolute percentage error (WMAPE) 
to avoid the “division by zero”

evaluation

baselines

• PINN
• PINN-LA & PINN-LA-2
• xPINN& FBPINN
• PFNN & PFNN-2

dataset

 two real-world problems and high-dimensional equation
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Experiments
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Ablation study

Extra fields

Hyper-parameters of Hardness


