

PAttern Recognition and NEural Computing

A Unified Hard-Constraint Framework for

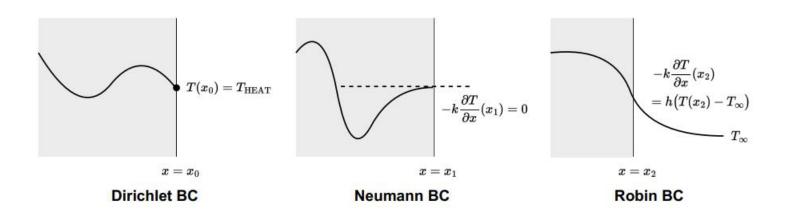
Solving Geometrically Complex PDEs

NeurIPS 2022

Many problems are characterized by partial differential equations (PDEs) with the solution constrained by boundary conditions (BCs)

commonly used BCs

- 1 Dirichlet
- ② Neumann
- ③ Robin



,

Physics-Informed Neural Networks (PINNs)

$$\begin{aligned} \Delta u(x_1, x_2) &= 0, & x_1 \in (0, 1], x_2 \in [0, 1], \\ u(x_1, x_2) &= g(x_2), & x_1 = 0, x_2 \in [0, 1], \end{aligned} \\ \mathcal{L}(\boldsymbol{\theta}) &= \mathcal{L}_{\mathcal{F}}(\boldsymbol{\theta}) + \mathcal{L}_{\mathcal{B}}(\boldsymbol{\theta}) \triangleq \frac{1}{N_f} \sum_{i=1}^{N_f} \left| \Delta \hat{u}(x_{f,1}^{(i)}, x_{f,2}^{(i)}; \boldsymbol{\theta}) \right|^2 + \frac{1}{N_b} \sum_{i=1}^{N_b} \left| \hat{u}(0, x_{b,2}^{(i)}; \boldsymbol{\theta}) - g(x_{b,2}^{(i)}) \right|^2 \end{aligned}$$

 $\mathcal{L}_{\mathcal{F}}$ convergeres faster than $\mathcal{L}_{\mathcal{B}}$, leading to solutions which does not satisfy the BCs

Hard-Constraint Methods

$$\hat{u}(\boldsymbol{x}; \boldsymbol{\theta}) = u^{\partial \Omega}(\boldsymbol{x}) + l^{\partial \Omega}(\boldsymbol{x}) \operatorname{NN}(\boldsymbol{x}; \boldsymbol{\theta})$$

 $l^{\partial \Omega}(\boldsymbol{x}) = \begin{cases} 0 & \text{if } \boldsymbol{x} \in \partial \Omega, \\ > 0 & \text{otherwise.} \end{cases}$

$$\hat{u}(x_1, x_2; \boldsymbol{\theta}) = g(x_2) + x_1 \operatorname{NN}(x_1, x_2; \boldsymbol{\theta}).$$

hard to directly extend this method to cases of Robin BCs, $u^{\partial\Omega}(x)$ is hard to obtain

Methodology

Problem Setup

$$\mathcal{F}[\boldsymbol{u}(\boldsymbol{x})] = \boldsymbol{0}, \qquad \boldsymbol{x} = (x_1, \dots, x_d) \in \Omega,$$

 $\mathcal{F} = (\mathcal{F}_1, \dots, \mathcal{F}_N) \qquad \boldsymbol{u}(\boldsymbol{x}) = (u_1(\boldsymbol{x}), \dots, u_n(\boldsymbol{x}))$

for each u_j , j = 1, ..., n, suitable boundary conditions (BCs) $a_i(x)u_j + b_i(x)(n(x) \cdot \nabla u_j) = g_i(x), \quad x \in \gamma_i, \quad \forall i = 1, ..., m_j,$

Dirichlet BC if $a_i \equiv 1$; $b_i \equiv 0$, a Neumann BC if $a_i \equiv 0$; $b_i \equiv 1$, and a Robin BC otherwise.

at least (
$$\sum_{j=1}^{n} m_j + N$$
) terms

Reformulating PDEs via Extra Fields

$$egin{aligned} p_j(x) &= ig(p_{j1}(x), \cdots, p_{jd}(x)ig) =
abla u_j, j = 1, \cdots, n \ & ilde{\mathcal{F}}[u(x), p_1(x), \dots, p_n(x)] = 0, & x \in \Omega, \ & p_j(x) =
abla u_j, & x \in \Omega, \ & y_j = 1, \dots, n, \end{aligned}$$
 $a_i(x)u_j + b_i(x)ig(n(x) \cdot p_j(x)ig) = g_i(x), & x \in \gamma_i, & orall i = 1, \dots, m_j. \end{aligned}$

 $\begin{array}{ll} \Delta u(x) = -a^2 \sin ax, & x \in (0, 2\pi), \\ u(x) = 0, & x = 0 \lor x = 2\pi, \end{array}$ $\begin{array}{ll} \nabla p(x) = -a^2 \sin ax, & x \in (0, 2\pi), \\ p(x) = \nabla u(x), & x \in (0, 2\pi), \\ u(x) = 0, & x = 0 \lor x = 2\pi. \end{array}$

$$a_i(\boldsymbol{x})u_j + b_i(\boldsymbol{x})(\boldsymbol{n}(\boldsymbol{x}) \cdot \boldsymbol{p}_j(\boldsymbol{x})) = g_i(\boldsymbol{x}), \qquad \boldsymbol{x} \in \gamma_i, \qquad \forall i = 1, \dots, m_j.$$

$$\int \quad \text{carefully chosen basis } \boldsymbol{B}(\boldsymbol{x})$$
 $\tilde{\boldsymbol{p}}_j^{\gamma_i}(\boldsymbol{x}; \boldsymbol{\theta}_j^{\gamma_i}) = \boldsymbol{B}(\boldsymbol{x}) \text{NN}_j^{\gamma_i}(\boldsymbol{x}; \boldsymbol{\theta}_j^{\gamma_i}) + \tilde{\boldsymbol{n}}(\boldsymbol{x}) \tilde{g}_i(\boldsymbol{x}),$

A Unified Hard-Constraint Framework

$$(\hat{u}_j, \hat{p}_j) = l^{\partial \Omega}(\boldsymbol{x}) \operatorname{NN}_{\min}(\boldsymbol{x}; \boldsymbol{\theta}_{\min}) + \sum_{i=1}^{m_j} \exp\left[-\alpha_i l^{\gamma_i}(\boldsymbol{x})\right] \tilde{p}_j^{\gamma_i}(\boldsymbol{x}; \boldsymbol{\theta}_j^{\gamma_i}), \quad \forall j = 1, \dots, n$$

$$\alpha_i = \frac{\beta_s}{\min_{\boldsymbol{x} \in \partial \Omega \setminus \gamma_i} l^{\gamma_i}(\boldsymbol{x})},$$

Methodology

final loss function

$$\mathcal{L} = \frac{1}{N_f} \sum_{k=1}^{N_f} \sum_{j=1}^{N} \left| \tilde{\mathcal{F}}_j[\hat{\boldsymbol{u}}(\boldsymbol{x}^{(k)}), \hat{\boldsymbol{p}}_1(\boldsymbol{x}^{(k)}), \dots, \hat{\boldsymbol{p}}_n(\boldsymbol{x}^{(k)})] \right|^2 \\ + \frac{1}{N_f} \sum_{k=1}^{N_f} \sum_{j=1}^{n} \left\| \hat{\boldsymbol{p}}_j(\boldsymbol{x}^{(k)}) - \nabla \hat{u}_j(\boldsymbol{x}^{(k)}) \right\|_2^2,$$

why it works?

- lower derivatives result in less accumulation of back-propagation, and thus stabilize the training process
- reduce the number of loss terms, alleviating the unbalanced competition between loss terms

Experiments

evaluation

mean absolute error (MAE) and mean absolute percentage error (MAPE) replace MAPE with weighted mean absolute percentage error (WMAPE) to avoid the "division by zero"

WMAPE =
$$\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{\sum_{i=1}^{n} |y_i|}$$
,

baselines

- PINN
- PINN-LA & PINN-LA-2
- xPINN& FBPINN
- PFNN & PFNN-2

dataset

two real-world problems and high-dimensional equation

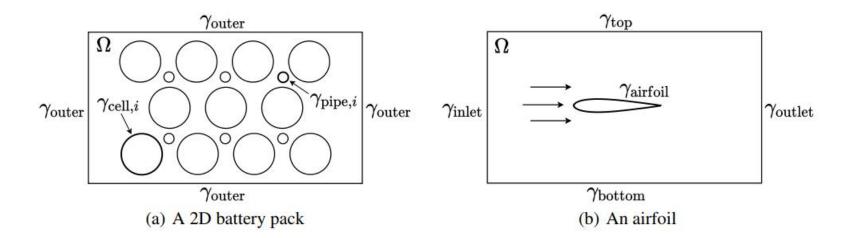


Table 1: Experimental results of the simulation of a 2D battery pack

	MAE of T			MAPE of T				
	t = 0	t = 0.5	t = 1	average	t = 0	t = 0.5	t = 1	average
PINN	0.1283	0.0457	0.0287	0.0539	128.21%	11.65%	4.47%	24.82%
PINN-LA	0.0918	0.0652	0.0621	0.0661	91.72%	19.13%	11.96%	27.06%
PINN-LA-2	0.1062	0.0321	0.0211	0.0402	106.05%	8.94%	4.09%	19.76%
FBPINN	0.0704	0.0293	0.0249	0.0343	70.33%	8.13%	5.87%	14.74%
xPINN	0.2230	0.1295	0.1515	0.1454	222.83%	30.28%	20.25%	54.70%
PFNN	0.0000	0.3036	0.4308	0.2758	0.02%	79.64%	84.60%	68.29%
PFNN-2	0.0000	0.3462	0.5474	0.3215	0.02%	66.06%	90.21%	59.62%
HC	0.0000	0.0246	0.0225	0.0221	0.02%	5.38%	3.77%	5.10%

	MAE			WMAPE			
	u_1	u_2	p	u_1	u_2	p	
PINN	0.4682	0.0697	0.3883	0.5924	1.1979	0.3539	
PINN-LA	0.4018	0.0595	0.2652	0.5084	1.0225	0.2418	
PINN-LA-2	0.5047	0.0659	0.2765	0.6385	1.1325	0.2521	
FBPINN	0.4058	0.0563	0.2665	0.5134	0.9676	0.2429	
xPINN	0.7188	0.0583	1.1708	0.9095	1.0029	1.0672	
HC	0.2689	0.0435	0.2032	0.3402	0.7474	0.1852	

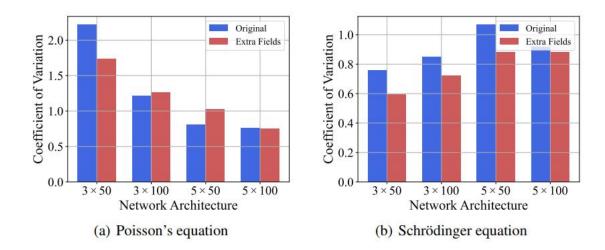
Table 2: Experimental results of the simulation of an airfoil

Table 3: Experimental results of the high-dimensional heat equation

	MAE of u			MAPE of u				
	t = 0	t = 0.5	t = 1	average	t = 0	t = 0.5	t = 1	average
PINN	0.0219	0.0428	0.1687	0.0582	1.43%	1.70%	4.04%	1.99%
PINN-LA	0.0085	0.0149	0.0727	0.0235	0.55%	0.59%	1.73%	0.78%
PINN-LA-2	0.0122	0.0274	0.1495	0.0466	0.79%	1.08%	3.57%	1.49%
PFNN	0.0000	0.1253	0.3367	0.1425	0.00%	5.02%	8.19%	4.64%
HC	0.0000	0.0029	0.0043	0.0026	0.00%	0.12%	0.11%	0.10%

Ablation study

Extra fields



Hyper-parameters of Hardness

Table 4: The MAE / MAPE of T on different β_s and β_t

	$\beta_t = 1$	$\beta_t = 2$	$\beta_t = 5$	$\beta_t = 10$
$\beta_s = 1$	0.3492/48.21%	0.3539/48.56%	0.3226 / 44.64%	0.2889/40.69%
$\beta_s = 2$	0.2800/40.30%	0.1670/26.16%	0.2140/31.72%	0.1619/25.20%
$\beta_s = 5$	0.1878/28.68%	0.1195/19.68%	0.0542 / 10.35%	0.0221 / 5.10%
$\beta_s = 10$	0.1896 / 29.15%	0.1104 / 18.70%	0.0517 / 10.56%	0.0329 / $8.15%$