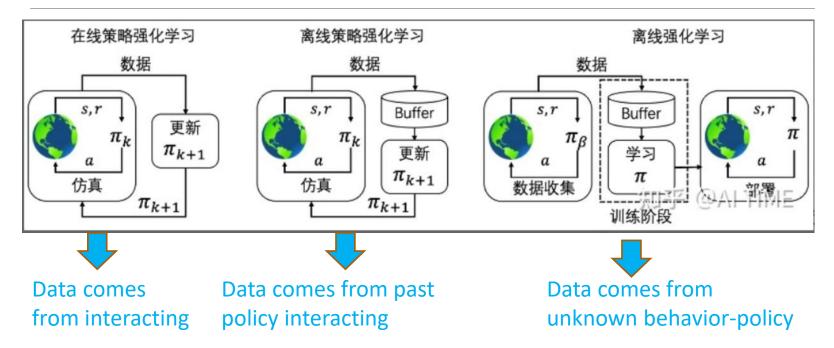
Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning

NIPS 2021

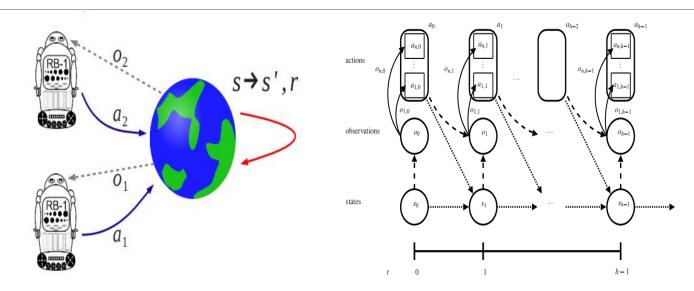
Offline RL



Offline Advantages:

- 1. Avoid cost of interacting with environment
- 2. Make use of precious expert demonstration

MULTI-AGENT:dec-POMDP



- 1. This state emits a joint observation
- 2. each agent observes its individual component
- 3. each agent selects an action, together forming the joint action,
- 4. joint action leads to state transition according to the transition model

Model of Dec-POMDP

$G = < S, A, P, r, \Omega, O, n, \gamma >$

S: set of states

A: set of joint actions

P: state transition function

r: reward function shared by all agents

 Ω : set of joint observations

O: observation function

n: agents

γ: discount rate

Extrapolation Error

Definition:

• Extrapolation error is an error in off-policy value learning which is introduced by the mismatch between the dataset and true state-action visitation of the current policy.

Cause:

• The extrapolation error mainly attributes the out-of-distribution (OOD) actions in the evaluation of $Q\pi$ (overestimate the Q value of unknown action)

To quantify the effect of OOD actions, we define the state-action pairs within the dataset as seen pairs. Otherwise, we name them as unseen pairs.

Extrapolation Error

$$\epsilon_{\mathrm{EXP}}(\tau, a) = \sum_{\tau'} \left(P_M(\tau' \mid \tau, a) - P_{\mathcal{B}}(\tau' \mid \tau, a) \right) \left(r(\tau, a, \tau') + \gamma \sum_{a'} \pi(a' \mid \tau') Q_{\mathcal{B}}^{\pi}(\tau', a') \right)$$

M: true MDP

B: new MDP computed from batch by P_B ($\tau' | \tau$, a) = $\mathcal{N}(\tau, a, \tau') / \sum_{\tilde{\tau}} \mathcal{N}(\tau, a, \tilde{\tau})$.

 $(N(\tau, a, \tau')$ is the number of times the tuple (s, a, s0) is observed inB)

E-error in ICQ

Define:

$$\boldsymbol{\epsilon}_{\mathbf{MDP}} = [\boldsymbol{\epsilon}_{\mathbf{s}}, \boldsymbol{\epsilon}_{\mathbf{u}}]^{\mathbf{T}}$$

$$\boldsymbol{\epsilon}_{\mathbf{EXT}} = [\mathbf{0}, \boldsymbol{\epsilon}_{\mathbf{b}}]^{\mathbf{T}}$$

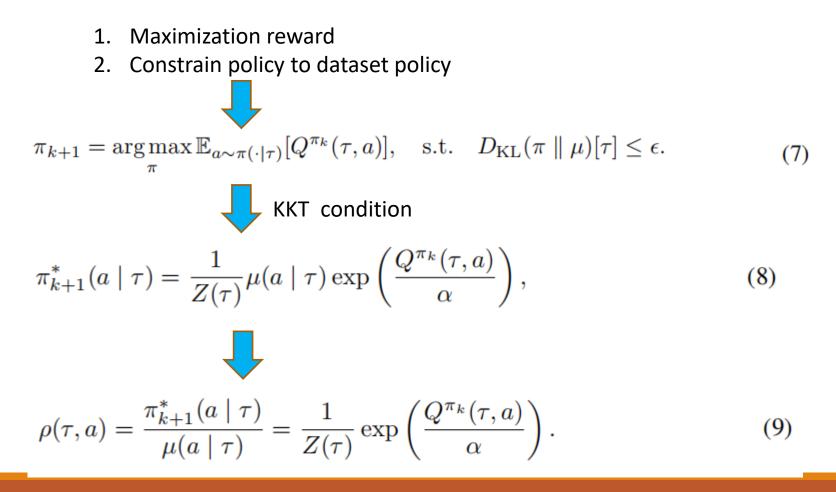
$$P_{M}^{\pi} = \begin{bmatrix} P_{\mathbf{s},\mathbf{s}}^{\pi}, P_{\mathbf{s},\mathbf{u}}^{\pi}; P_{\mathbf{u},\mathbf{s}}^{\pi}, P_{\mathbf{u},\mathbf{u}}^{\pi} \end{bmatrix} \quad \mathbf{c} \qquad \mathbf{c}$$

$$\begin{bmatrix} \boldsymbol{\epsilon}_{\mathbf{s}} \\ \boldsymbol{\epsilon}_{\mathbf{u}} \end{bmatrix} = \gamma \begin{bmatrix} P_{\mathbf{s},\mathbf{s}}^{\pi}, P_{\mathbf{s},\mathbf{u}}^{\pi} \\ P_{\mathbf{u},\mathbf{s}}^{\pi}, P_{\mathbf{u},\mathbf{u}}^{\pi} \end{bmatrix} \begin{bmatrix} \boldsymbol{\epsilon}_{\mathbf{s}} \\ \boldsymbol{\epsilon}_{\mathbf{u}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\epsilon}_{\mathbf{b}} \end{bmatrix}. \quad (3)$$
Es: seen pair estimate error
Eu: unseen pair estimate error

Theorem 1. Given a deterministic MDP, the propagation of $\epsilon_{\mathbf{b}}$ to $\epsilon_{\mathbf{s}}$ is proportional to $\|P_{\mathbf{s},\mathbf{u}}^{\pi}\|_{\infty}$:

$$\|\boldsymbol{\epsilon}_{\mathbf{s}}\|_{\infty} \leq \frac{\gamma \left\|P_{\mathbf{s},\mathbf{u}}^{\pi}\right\|_{\infty}}{(1-\gamma)\left(1-\gamma \left\|P_{\mathbf{s},\mathbf{s}}^{\pi}\right\|_{\infty}\right)} \|\boldsymbol{\epsilon}_{\mathbf{b}}\|_{\infty}.$$
(4)

Implicit Constraint Q-learning



Implicit Constraint Q-learning

Standard policy evaluation(off policy) $(\mathcal{T}^{\pi}Q)(\tau,a) \triangleq Q(\tau,a) + \mathbb{E}_{\tau'}[r + \gamma \mathbb{E}_{a' \sim \pi}[Q(\tau',a')] - Q(\tau,a)]. \quad (5)$ $(\mathcal{T}^{\pi}Q)(\tau,a) = Q(\tau,a) + \mathbb{E}_{\tau'}[r + \gamma \mathbb{E}_{a' \sim \mu}[\rho(\tau',a')Q(\tau',a')] - Q(\tau,a)], \quad (6)$ According to Equation 9, it gives the ICQ(re-weight the target value function)

$$\mathcal{T}_{\text{ICQ}}Q(\tau,a) = r + \gamma \mathbb{E}_{a' \sim \mu} \left[\frac{1}{Z(\tau')} \exp\left(\frac{Q(\tau',a')}{\alpha}\right) Q(\tau',a') \right].$$
(10)

 $Z(\tau) = \sum_{\tilde{a}} \mu(\tilde{a} \mid \tau) \exp\left(\frac{1}{\alpha}Q^{\pi_k}(\tau, \tilde{a})\right)$ is the normalizing partition function

Thus we obtain a SARSA-like algorithm which not uses any unseen pairs.

Convergence or No?

Theorem 2. Let $\mathcal{T}_{ICQ}^k Q_0$ denote that the operator \mathcal{T}_{ICQ} are iteratively applied over an initial stateaction value function Q_0 for k times. Then, we have $\forall(\tau, a)$, $\limsup_{k\to\infty} \mathcal{T}_{ICQ}^k Q_0(\tau, a) \leq Q^*(\tau, a)$,

$$\liminf_{k \to \infty} \mathcal{T}_{\text{ICQ}}^k Q_0(\tau, a) \ge Q^*(\tau, a) - \frac{\gamma(|A| - 1)}{(1 - \gamma)} \max\left\{\frac{1}{(\frac{1}{\alpha} + 1)C + 1}, \frac{2Q_{\max}}{1 + C\exp(\frac{1}{\alpha})}\right\}, \quad (13)$$

where |A| is the action space, $|A_{\tau}|$ is the action space for state τ , $C \triangleq \inf_{\tau \in S} \inf_{2 \leq i \leq |A_{\tau}|} \frac{\mu(a_{[1]}|\tau)}{\mu(a_{[i]}|\tau)}$ and $\mu(a_{[1]} \mid \tau)$ denotes the probability of choosing the expert action according to behavioral policy μ . Moreover, the upper bound of $\mathcal{T}_{BCQ}^k Q_0 - \mathcal{T}_{ICQ}^k Q_0$ decays exponentially fast in terms of α .

ICQ操作符从理论上可以证明收敛到一簇稳定解

Implicit Constraint Q-learning

Minimizing:

$$\mathcal{J}_Q(\phi) = \mathbb{E}_{\tau, a, \tau', a' \sim \mathcal{B}} \left[r + \gamma \frac{1}{Z(\tau')} \exp\left(\frac{Q(\tau', a'; \phi')}{\alpha}\right) Q(\tau', a'; \phi') - Q(\tau, a; \phi) \right]^2, \quad (14)$$

Policy learning(minimizing KL distance):

$$\mathcal{J}_{\pi}(\theta) = \mathbb{E}_{\tau \sim \mathcal{B}} \left[D_{\mathrm{KL}} \left(\pi_{k+1}^{*} \| \pi_{\theta} \right) [\tau] \right] = \mathbb{E}_{\tau \sim \mathcal{B}} \left[-\sum_{a} \pi_{k+1}^{*} (a \mid \tau) \log \frac{\pi_{\theta}(a \mid \tau)}{\pi_{k+1}^{*}(a \mid \tau)} \right]$$
$$\stackrel{(a)}{=} \mathbb{E}_{\tau \sim \mathcal{B}} \left[\sum_{a} \frac{\pi_{k+1}^{*}(a \mid \tau)}{\mu(a \mid \tau)} \mu(a \mid \tau) \left(-\log \pi_{\theta}(a \mid \tau) \right) \right]$$
$$\stackrel{(b)}{=} \mathbb{E}_{\tau,a \sim \mathcal{B}} \left[-\frac{1}{Z(\tau)} \log(\pi(a \mid \tau; \theta)) \exp\left(\frac{Q(\tau, a)}{\alpha}\right) \right],$$

ICQ-MA

Value function decompose:

$$\mathcal{J}_{\boldsymbol{\pi}}(\boldsymbol{\theta}) = \sum_{i} \mathbb{E}_{\tau^{i}, a^{i} \sim \mathcal{B}} \left[-\frac{1}{Z^{i}(\tau^{i})} \log(\pi^{i}(a^{i} \mid \tau^{i}; \boldsymbol{\theta}_{i})) \exp\left(\frac{w^{i}(\boldsymbol{\tau})Q^{i}(\tau^{i}, a^{i})}{\alpha}\right) \right]$$

Value function estimate:

$$\mathcal{J}_{Q}(\phi,\psi) = \mathbb{E}_{\mathcal{B}}\left[\sum_{t\geq 0} (\gamma\lambda)^{t} \left(r_{t} + \gamma \frac{1}{Z(\boldsymbol{\tau}_{t+1})} \exp\left(\frac{Q(\boldsymbol{\tau}_{t+1}, \boldsymbol{a}_{t+1})}{\alpha}\right) Q(\boldsymbol{\tau}_{t+1}, \boldsymbol{a}_{t+1}) - Q(\boldsymbol{\tau}_{t}, \boldsymbol{a}_{t})\right)\right]$$
(19)

where $Q(\tau_{t+1}, a_{t+1}) = \sum_{i} w^{i}(\tau_{t+1}; \psi') Q^{i}(\tau_{t+1}^{i}, a_{t+1}^{i}; \phi'_{i}) - b(\tau_{t+1}; \psi').$

Value estimate with λ return: $(\mathcal{T}_{ICQ}^{\lambda}Q)(\boldsymbol{\tau}, \boldsymbol{a}) \triangleq Q(\boldsymbol{\tau}, \boldsymbol{a}) + \mathbb{E}_{\mu} \left[\sum_{t \ge 0} (\gamma \lambda)^{t} (r_{t} + \gamma \rho(\boldsymbol{\tau}_{t+1}, \boldsymbol{a}_{t+1}) Q(\boldsymbol{\tau}_{t+1}, \boldsymbol{a}_{t+1}) - Q(\boldsymbol{\tau}_{t}, \boldsymbol{a}_{t})) \right],$ (20)

ICQ IN SINGLE AGENT

Algorithm 1: Implicit Constraint Q-Learning in Single-Agent Tasks.

Input: Offline buffer \mathcal{B} , target network update rate d.

Initialize critic network $Q^{\pi}(\cdot;\phi)$ and actor network $\pi(\cdot;\theta)$ with random parameters. Initialize target networks: $\phi' = \phi$, $\theta' = \theta$. for t = 1 to T do Sample trajectories from \mathcal{B} . Train policy according to $\mathcal{J}_{\pi}(\theta) = \mathbb{E}_{\tau \sim \mathcal{B}} \left[-\frac{1}{Z(\tau)} \log(\pi(a \mid \tau; \theta)) \exp\left(\frac{Q^{\pi}(\tau, a)}{\alpha}\right) \right]$. Train critic according to $\mathcal{J}_{Q}(\phi) = \mathbb{E}_{\tau \sim \mathcal{B}} \left[r + \gamma \frac{1}{Z(\tau')} \exp\left(\frac{Q(\tau', a'; \phi')}{\alpha}\right) Q(\tau', a'; \phi') - Q(\tau, a; \phi) \right]^{2}$. if $t \mod d = 0$ then | Update target networks: $\phi' = \phi$, $\theta' = \theta$. end

ICQ In multi-agent

Algorithm 2: Implicit Constraint Q-Learning in Multi-Agent Tasks.

Input: Offline buffer \mathcal{B} , target network update rate d.

Initialize critic networks $Q^i(\cdot; \phi_i)$, actor networks $\pi^i(\cdot; \theta_i)$ and Mixer network $M(\cdot; \psi)$ with random parameters. Initialize target networks: $\phi' = \phi$, $\theta' = \theta$, $\psi' = \psi$. for t = 1 to T do Sample trajectories from \mathcal{B} . Train individual policy according to $\mathcal{J}_{\pi}(\theta) = \sum_i \mathbb{E}_{\tau^i, a^i} \sim_{\mathcal{B}} \left[-\frac{1}{Z^i(\tau^i)} \log(\pi^i(a^i \mid \tau^i; \theta_i)) \exp\left(\frac{w^i(\tau)Q^i(\tau^i, a^i)}{\alpha}\right) \right]$. Train critic according to $\mathcal{J}_Q(\phi, \psi) =$ $\mathbb{E}_{\mathcal{B}} \left[\sum_{t \ge 0} (\gamma \lambda)^t \left[r_t + \gamma \frac{\exp\left(\frac{1}{\alpha}Q(\tau_{t+1}, a_{t+1}; \phi', \psi')\right)}{Z(\tau_{t+1}; \phi', \psi')} Q(\tau_{t+1}, a_{t+1}; \phi', \psi') - Q(\tau_t, a_t; \phi, \psi) \right] \right]^2$. if $t \mod d = 0$ then | Update target networks: $\phi' = \phi$, $\theta' = \theta$, $\psi' = \psi$. end

Experiments

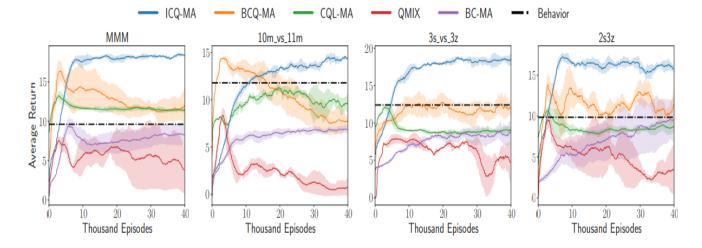


Figure 4: Performance comparison in offline StarCraft II tasks.

Baselines comparison

L							
Dataset type	Environment	ICQ (ours)	BC	BCQ	CQL	AWR	BRAC-p
fixed	antmaze-umaze	85.0 ± 2.7	65.0	78.9	74.0	56.0	50.0
play	antmaze-medium	80.0 ± 1.3	0.0	0.0	61.2	0.0	0.0
play	antmaze-large	51.0 ± 4.8	0.0	6.7	15.8	0.0	0.0
diverse	antmaze-umaze	65.0 ± 3.3	55.0	55.0	84.0	70.3	40.0
diverse	antmaze-medium	65.0 ± 3.9	0.0	0.0	53.7	0.0	0.0
diverse	antmaze-large	44.0 ± 4.2	0.0	2.2	14.9	0.0	0.0
expert	adroit-door	103.9 ± 3.6	101.2	99.0	-	102.9	-0.3
expert	adroit-relocate	109.5 ± 11.1	101.3	41.6	-	91.5	-0.3
expert	adroit-pen	123.8 ± 22.1	85.1	114.9	-	111.0	-3.5
expert	adroit-hammer	128.3 ± 2.5	125.6	107.2	-	39.0	0.3
human	adroit-door	$6.4{\pm}2.4$	0.5	-0.0	9.1	0.4	-0.3
human	adroit-relocate	1.5 ± 0.7	-0.0	-0.1	0.35	-0.0	-0.3
human	adroit-pen	91.3 ± 10.3	34.4	68.9	55.8	12.3	8.1
human	adroit-hammer	$2.0{\pm}0.9$	1.5	0.5	2.1	1.2	0.3
medium	walker2d	$71.8 {\pm} 10.7$	66.6	53.1	79.2	17.4	77.5
medium	hopper	55.6 ± 5.7	49.0	54.5	58.0	35.9	32.7
medium	halfcheetah	42.5 ± 1.3	36.1	40.7	44.4	37.4	43.8
med-expert	walker2d	98.9 ± 5.2	66.8	57.5	98.7	53.8	76.9
med-expert	hopper	109.0 ± 13.6	111.9	110.9	111.0	27.1	1.9
med-expert	halfcheetah	110.3 ± 1.1	35.8	64.7	104.8	52.7	44.2