

Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding

Lan-Zhe Guo¹ Yu-Feng Li¹

ICML 2022

Semi-Supervised Learning

• Learning a classifier from labeled and unlabeled examples

• The most representative method: FixMatch

$$\frac{1}{B}\sum_{b=1}^{B} \mathrm{H}(p_b, p_{\mathrm{m}}(y \mid \alpha(x_b))) + \frac{1}{\mu B}\sum_{b=1}^{\mu B} \mathbb{1}(\max(q_b) \ge \tau) \mathrm{H}(\hat{q}_b, p_{\mathrm{m}}(y \mid \mathcal{A}(u_b)))$$

• An implicit assumption: the data is **class-balanced**.

Motivation

• However, the real-world is class-imbalanced...

Places [Wang et al. 2017] There are much more "dining room" than "library" Species [Van Horn et al. 2019] There are much more "dog" than "panda"

Motivation

 By adopting a fixed threshold, the sota SSL method suffers from overfitting to majority classes, leading to a low recall rates on minority classes.

- Solution: class-dependent threshold
 - Using an adaptive class-dependent threshold to select pseudo labels.

The Proposed Method

• Reformulation of SSL objective function

 s_k is used to control how many pseudo labels should be selected for class k.

$$\min_{\hat{\mathbf{y}},\mathbf{s},\theta} \quad \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} -y_{i,k} \log f(\mathbf{y} = k | \alpha(\mathbf{x}_{i}^{l}); \theta)$$

$$+ \frac{1}{M} \sum_{i=1}^{M} \sum_{k=1}^{K} [-\hat{y}_{i,k} \log f(\mathbf{y} = k | \alpha(\mathbf{x}_{i}^{u}); \theta)$$

$$\frac{-s_{k} \hat{y}_{i,k}}{\sum_{i=1}^{N} \sum_{k=1}^{K} [-\hat{y}_{i,k} \log f(\mathbf{y} = k | \alpha(\mathbf{x}_{i}^{u}); \theta)$$

$$\text{s.t.} \quad \hat{\mathbf{y}}_{i} = [\hat{y}_{i,1}, \cdots, \hat{y}_{i,K}] \in \{0, 1\}^{K}$$

$$0 \leq \mathbf{1}^{\top} \hat{\mathbf{y}}_{i} \leq 1$$

$$s_{k} > 0, \quad \forall 1 \leq k \leq K$$

- It requires to answer the following two questions:
 - Why s_k can be regarded a class-dependent threshold ?

NT

 \boldsymbol{L}

• **How** to find the optimal s_k ?

Given a model f, it satisfies

$$\hat{y}_{i,k} = \begin{cases} 1, & \text{if } k = \operatorname{argmax} \frac{f(\mathbf{y} = k | \alpha(\mathbf{x}_i^u); \theta)}{\exp(-s_k)} \\ & \frac{f(\mathbf{y} = k | \alpha(\mathbf{x}_i^u); \theta)}{\exp(-s_k)} \geq 1. \\ 0, & \text{otherwise.} \end{cases}$$

Lemma 4.2. If $\exp(s_k - s_{k'}) > \frac{f(\mathbf{y}=k'|\alpha(\mathbf{x}_i^u);\theta)}{f(\mathbf{y}=k|\alpha(\mathbf{x}_i^u);\theta)}$ holds for all k and k' that satisfy $f(\mathbf{y} = k|\alpha(\mathbf{x}_i^u);\theta) > f(\mathbf{y} = k'|\alpha(\mathbf{x}_i^u);\theta)$, then we have: $\operatorname{argmax} \frac{f(\mathbf{y}=k|\alpha(\mathbf{x}_i^u);\theta)}{\exp(-s_k)} = \operatorname{argmax} f(\mathbf{y} = k|\alpha(\mathbf{x}_i^u);\theta)$.

If $\exp(s_k - s_{k'}) > \frac{f(\mathbf{y}=k'|\alpha(\mathbf{x}_i^u);\theta)}{f(\mathbf{y}=k|\alpha(\mathbf{x}_i^u);\theta)}$, the adaptive threshold can be obtained $\mathbb{I}(\max(\mathbf{q}_i) \ge \exp(-s_{\hat{\mathbf{y}}_i^u}))$

The Proposed Method

- Finding the optimal s_k
 - If the ground-truth label distribution is known

The threshold s_k can be solved has the same class distribution as the ground-truth y^\ast

$$\sum_{i=1}^{M} \mathbb{I}(f(\mathbf{y} = k | \alpha(\mathbf{x}_{i}^{u}); \theta) \ge \exp(-s_{k}))$$
$$= \frac{\sum_{i=1}^{M} \mathbb{I}(f(\mathbf{y} = 1 | \alpha(\mathbf{x}_{i}^{u}); \theta) \ge \exp(-s_{1}))}{\gamma_{k}} \qquad \gamma_{k} = \frac{\sum_{i=1}^{M} y_{i,1}^{*}}{\sum_{i=1}^{M} y_{i,k}^{*}}$$

• If the ground-truth class distribution is unknown

The threshold s_k can be solved to make sure the same percentage of pseudo labels are selected for each class

$$\rho = \frac{\sum_{i=1}^{M} \mathbb{I}(f(\mathbf{y} = 1 | \alpha(\mathbf{x}_i^u); \theta) \ge \tau_1)}{length(C_1)}$$

Experiments

Table 1. Comparison of classification performance (Accuracy (%)) on imbalanced CIFAR-10 dataset under three different imbalance ratio: $\gamma = 50, 100, 150$ and two different numbers of labeled data: $N_1 = 1500, M_1 = 3000$ and $N_1 = 500, M_1 = 4000$. The best results are indicated in bold.

Imbalanced CIFAR-10 Dataset							
	N_1	$N_1 = 1500, M_1 = 3000$		$N_1 = 500, M_1 = 4000$			
Algorithm	$\gamma = 50$	$\gamma = 100$	$\gamma = 150$	$\gamma = 50$	$\gamma = 100$	$\gamma = 150$	
Supervised	65.23 ± 0.05	58.94 ± 0.13	55.63 ± 0.38	51.31 ± 0.34	45.82 ± 0.41	40.90 ± 0.39	
CBL	65.52 ± 0.31	58.52 ± 0.45	52.36 ± 0.58	51.94 ± 0.71	46.22 ± 0.92	41.58 ± 1.24	
Re-Sampling	64.53 ± 0.39	56.34 ± 0.42	53.21 ± 0.51	51.96 ± 0.65	48.13 ± 1.25	40.26 ± 1.88	
cRT	67.82 ± 0.14	63.43 ± 0.45	59.56 ± 0.44	56.28 ± 1.45	48.11 ± 0.79	45.02 ± 1.08	
LDAM	68.91 ± 0.10	63.15 ± 0.24	58.68 ± 0.30	56.41 ± 0.92	49.27 ± 0.88	45.10 ± 0.75	
Mean-Teacher	68.84 ± 0.82	61.33 ± 0.28	54.79 ± 0.31	56.34 ± 1.68	48.55 ± 0.77	45.32 ± 1.20	
MixMatch	73.59 ± 0.46	65.03 ± 0.26	62.71 ± 0.29	65.32 ± 1.20	56.41 ± 1.96	52.38 ± 1.88	
ReMixMatch	78.96 ± 0.29	72.88 ± 0.12	68.61 ± 0.40	76.83 ± 0.98	70.12 ± 1.23	59.58 ± 1.30	
FixMatch	79.10 ± 0.14	71.50 ± 0.31	68.47 ± 0.15	77.34 ± 0.96	68.45 ± 0.94	60.10 ± 0.82	
DARP	81.60 ± 0.31	75.23 ± 0.14	69.31 ± 0.26	76.72 ± 0.46	69.41 ± 0.50	61.23 ± 0.31	
CReST	82.03 ± 0.26	75.08 ± 0.41	69.84 ± 0.39	76.18 ± 0.36	69.50 ± 0.70	60.81 ± 0.55	
Adsh	$\textbf{83.38} \pm \textbf{0.06}$	$\textbf{76.52} \pm \textbf{0.35}$	$\textbf{71.49} \pm \textbf{0.30}$	$\textbf{79.27} \pm \textbf{0.38}$	$\textbf{70.97} \pm \textbf{0.46}$	$\textbf{62.04} \pm \textbf{0.51}$	

$$\gamma_l = \frac{N_1}{N_K} \qquad \gamma_u =$$

 $\frac{M_1}{M_K}$

Experiments

Experiments

(c) Hyper-Parameter Sensitivity

	SVHN	STI	2-10
Algorithm	$\gamma = 100$	$\gamma_l = 10$	$\gamma_l = 20$
ReMixMatch	88.91 ± 0.32	67.43 ± 0.43	60.82 ± 0.93
FixMatch	89.34 ± 0.20	73.25 ± 0.21	63.54 ± 0.21
DARP	90.15 ± 0.46	76.97 ± 0.45	68.87 ± 0.66
CReST	89.90 ± 0.64	76.30 ± 0.38	69.43 ± 0.89
Adsh	$\textbf{92.13} \pm \textbf{0.39}$	$\textbf{79.25} \pm \textbf{0.41}$	$\textbf{71.03} \pm \textbf{0.20}$

Nanjing University of Aeronautics and Astronautics

ΤΗΑΝΚS