

PAttern Recognition and NEural Computing

L1 Regression

with Lewis Weights Subsampling

Aditya Parulekar adityaup@cs.utexas.edu UT Austin Advait Parulekar advaitp@utexas.edu UT Austin Eric Price ecprice@cs.utexas.edu UT Austin

APPROX/RANDOM 2021

• Linear ℓ_1 regression

$$\beta^* = \arg\min_{\beta \in \mathbb{R}^d} \|X\beta - y\|_1$$

• Active Linear ℓ_1 regression $\widehat{\beta} := \arg \min \|SX\beta - Sy\|_1.$

Such that the following holds with probability at least 1 – δ

$$\|X\widehat{\beta} - y\|_1 \le (1+\varepsilon)\min_{\beta} \|X\beta - y\|_1.$$

The method

Definition 2.1 (Subspace Embeddings). A subspace embedding for the column space of the matrix $X \in \mathbb{R}^{n \times d}$ is a matrix S such that for all $\beta \in \mathbb{R}^d$,

 $\|SX\beta\| = (1\pm\varepsilon)\|X\beta\|$

If we had access to all of y, we can find a subspace Embedding
S for the combined matrix [X y] to solve the problem

$$\begin{split} \|X\widehat{\beta} - y\|_{1} &\leq \frac{1}{1 - \varepsilon} \|SX\widehat{\beta} - Sy\|_{1} \\ &\leq \frac{1}{1 - \varepsilon} \|SX\beta^{*} - Sy\|_{1} \\ &\leq \frac{1 + \varepsilon}{1 - \varepsilon} \|X\beta^{*} - y\|_{1} \\ &\leq (1 + 4\varepsilon) \|X\beta^{*} - y\|_{1}. \end{split}$$

The method

Definition 2.5 (Lewis Weights). The ℓ_1 Lewis weights of a matrix X are the unique weights $\{w_i\}_{i=1}^n$ that satisfy $w_i^2 = x_i^\top (\sum_{j=1}^n \frac{1}{w_j} x_j x_j^\top)^{-1} x_i$ for all i.

Definition 2.3 (Sampling and Reweighting with $\{p_i\}_{i=1}^n$). For any sequence $\{p_i\}_{i=1}^n$, let $N = \sum_i p_i$. Then, the sampling-and-reweighting distribution $S(\{p_i\}_{i=1}^n)$ over the set of matrices $S \in \mathbb{R}^{N \times n}$ is such that each row of S is independently the ith standard basis vector with probability $\frac{p_i}{N}$, scaled by $\frac{1}{p_i}$. For any $k \in [N]$, let i_k denote the index such that $S_{k,i_k} = \frac{1}{p_{i_k}}$.

Theorem 2.6 ([CP15] Theorem 2.3). Sampling at least $O(\frac{d \log d}{\varepsilon^2})$ rows according to the ℓ_1 Lewis weights $\{w_i\}_{i=1}^n$ of a matrix $X \in \mathbb{R}^{n \times d}$ results in a subspace embedding for X with at least some constant probability. If at least $O(\frac{d \log \frac{d}{\varepsilon \delta}}{\varepsilon^2})$ rows are sampled, then we have a subspace embedding with probability at least $1 - \delta$.

• The problem is: **we do not have access to all of y**

the Lewis weight sampling-and-embedding matrix *S* preserves $||X\beta||_1$ for all β , **but it doesn't preserve** $||X\beta - y||_1$

Solution

estimate $\|X\widehat{\beta} - y\|_1 - \|X\beta^* - y\|_1$ with $\|SX\widehat{\beta} - Sy\|_1 - \|SX\beta^* - Sy\|_1$

Lemma 4.1. Let $X \in \mathbb{R}^{n \times d}$ have ℓ_1 Lewis weights $\{w_i\}_{i \in [n]}$. Then, for any N that is at least $O\left(\frac{d}{\varepsilon^2}\log\frac{d}{\varepsilon\delta}\right)$, there is a sampling-and-reweighting distribution $\mathcal{S}(\{p_i\}_{i=1}^n)$ satisfying $\sum_i p_i = N$ such that for all y, if $S \sim \mathcal{S}(\{p_i\}_{i=1}^n)$ and $\beta^* = \arg\min ||X\beta - y||_1$, we have for all β

$$(\|SX\beta^* - Sy\|_1 - \|SX\beta - Sy\|_1) - (\|X\beta^* - y\|_1 - \|X\beta - y\|_1) \le \varepsilon \cdot \|X\beta^* - X\beta\|_1$$
(9)

with probability at least $1 - \delta$. Further, for constant δ , $m = O(d \log d/\varepsilon^2)$ rows suffice.

Method

Lemma 4.1. Let $X \in \mathbb{R}^{n \times d}$ have ℓ_1 Lewis weights $\{w_i\}_{i \in [n]}$. Then, for any N that is at least $O\left(\frac{d}{\varepsilon^2}\log\frac{d}{\varepsilon\delta}\right)$, there is a sampling-and-reweighting distribution $\mathcal{S}(\{p_i\}_{i=1}^n)$ satisfying $\sum_i p_i = N$ such that for all y, if $S \sim \mathcal{S}(\{p_i\}_{i=1}^n)$ and $\beta^* = \arg\min ||X\beta - y||_1$, we have for all β

$$\|SX\beta^* - Sy\|_1 - \|SX\beta - Sy\|_1) - (\|X\beta^* - y\|_1 - \|X\beta - y\|_1) \le \varepsilon \cdot \|X\beta^* - X\beta\|_1$$
(9)

with probability at least $1 - \delta$. Further, for constant δ , $m = O(d \log d/\varepsilon^2)$ rows suffice.

Proof of Theorem 3.1. Applying Lemma 4.1 to
$$\widehat{\beta} \coloneqq \arg \min \|SX\beta - Sy\|_1$$
, we get
 $\left(\|SX\beta^* - Sy\|_1 - \|SX\widehat{\beta} - Sy\|_1\right) \le \left(\|X\beta^* - y\|_1 - \|X\widehat{\beta} - y\|_1\right) + \varepsilon \cdot \|X\beta^* - X\widehat{\beta}\|_1$

Since $\widehat{\beta}$ is the minimizer of $\|SX\beta - Sy\|_1$, the left side is non-negative. So,

$$\begin{split} \|X\widehat{\beta} - y\|_{1} &\leq \|X\beta^{*} - y\|_{1} + \varepsilon \cdot \|X\beta^{*} - X\widehat{\beta}\|_{1} \\ &\leq \|X\beta^{*} - y\|_{1} + \varepsilon \cdot (\|X\beta^{*} - y\|_{1} + \|X\widehat{\beta} - y\|_{1}) \end{split}$$

Rearranging, and assuming $\varepsilon < 1/2$,

$$\|X\widehat{\beta} - y\|_1 \le \frac{1+\varepsilon}{1-\varepsilon} \|X\beta^* - y\|_1$$
$$\le (1+4\varepsilon) \|X\beta^* - y\|_1$$

Using $\varepsilon' = \varepsilon/4$ proves the theorem.

Results

Theorem 3.1. Let $X \in \mathbb{R}^{n \times d}$ have ℓ_1 Lewis weights $\{w_i\}_{i \in [n]}$, and let $0 < \varepsilon, \delta < 1$. Then, for any N that is at least $O\left(\frac{d}{\varepsilon^2}\log\frac{d}{\varepsilon\delta}\right)$, there is a sampling-and-reweighting distribution $\mathcal{S}(\{p_i\}_{i=1}^n)$ satisfying $\sum_i p_i = N$ such that for all y, if $S \sim \mathcal{S}(\{p_i\}_{i=1}^n)$ and $\widehat{\beta} = \arg\min \|SX\beta - Sy\|_1$, we have $\|X\widehat{\beta} - y\|_1 \le (1 + \varepsilon)\min_{\beta} \|X\beta - y\|_1$

with probability $1 - \delta$. If $\delta = O(1)$ is some constant, then N at least $O\left(\frac{1}{\epsilon^2}d\log d\right)$ rows suffice.

Theorem 3.5. For any $d \ge 2$, $\epsilon < \frac{1}{10}$, $\delta < \frac{1}{4}$, there exist sets $\mathcal{X} \in \mathbb{R}^d$, $\mathcal{Y} \in \mathbb{R}$ of inputs and labels, and a distribution P on $\mathcal{X} \times \mathcal{Y}$ such that any algorithm which solves Problem 2, with $\varepsilon = 1$, requires at least $m = \Omega(\frac{d}{\epsilon^2} + \frac{1}{\epsilon^2}\log\frac{1}{\delta} + d\log\frac{1}{\delta})$ samples.

which indicates that the proposed method is near optimal

THANKS