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I Problem setting PEII‘NP_E

« Linear £, regression

f* =argmin || X3 —y||;
BERA

* Active Linear £, regression Sampling matrix

/
[ :=argmin |[[SX3 — Sy|;.

Such that the following holds with probability at least 1 - 6

||X,3 —yll < (1 + ") 111111 | X3 — vyl
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I The method PEII‘NP_E

Definition 2.1 (Subspace Embeddings). A subspace embedding for the column space of the matrix
X € R™"*4 is a4 matriz S such that for all 3 € RY,

[SX 8] = (1£2)| X8

- If we had access to all of y, we can fFind a subspace Embedding
S for the combined matrix [X y] to solve the problem

~ 1 ~
|XB =yl < ——|ISXB - Syll
]‘ e U
< 15X 5" = Syl
14+<, ., .
< X5 —ylh

< (14+49)||XB* —yl1.
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I The method PEII‘NP_E

Definition 2.5 |(Lewis Weights)] The (1 Lewis weights of a matriz X are the unique weights

{w;} | that satisfy fu.r? = LI(Z? ) 13 I;I' —Lg. for all i.

Definition 2.3 (Sampling and Reweighting with {p;}" ;). For any sequence {p;}ieq, let N =" p;.
Then, the sampling-and-reweighting distribution S ( {pz * ) over the set of mutmc,es S € RNX”’ 18
such that each row of S is independently the ith standard basis vector with probability 5, scaled by

pl, For any k € [N], let iy, denote the index such that Sy, = }%-
T ‘ lk

Theorem 2.6 ([CP15] Theorem 2.3). Sampling at least O(dlogd) rows according to the (1 Lewis

weights {w;}" | of a matriz X € R4 results in a subspace embeddww for X with at least some

dl
constant probability. If at least O(—O%—) rows are sampled, then we have a subspace embedding

with probability at least 1 — 4.
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I The method PEII‘NP_E

 The problem is: we do not have access to all of y

the Lewis weight sampling-and-embedding matrix S preserves || Xg||,for

all g, but it doesn’t preserve || X8 — y|l1

« Solution

estimate ||X§— yll1 — [|XB" —y|1 with HSXg— Sy

1 — ||SX 3" — Syl

Lemma 4.1. Let X € R™™ 4 have (1 Lewis weights {witicp)- Then, for any N that is at least
O (E%log %) there is a sampling-and-reweighting distribution S({p;}I_{) satisfying > .pi = N
such that for all y, if S ~ S({pi}I;) and B* = argmin || X5 — y||1. we have for all /3

(ISX5" = Syl = [[SXB = Sylly) — (IX5" =yl = X8 —uyll) <e-[[XB"=XB (9
with probability at least 1 — 5. Further. for constant 6, m = O(dlog d/ 52) rows suffice.
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| Method ParN,C

Lemma 4.1. Let X € R™ % have (1 Lewis weights {-wi}z-e[n]. Then, for any N that 1s at least
O (E%log %) there is a sampling-and-reweighting distribution S({p;}"_,) satisfying > . pi = N
such that for all y, if S ~ S({pi}7 ;) and §* = argmin || X5 — yl|[1, we have for all B

(ISX5" = Sylly = 1SXB = Syll1) = (IXB" —ylli = [|[XB =yl1) <e-[X5" = X8l (9)

with probability at least 1 —o. Further, for constant 6, m = O(dlog d/c,'"z) rows suffice.

Proof of Theorem 3.1. Applying Lemma 4.1 to ;S; = argmin ||SX3 — Sy||1, we get
( SXB = Syl) < (IX8" =yl = |1X5 = ylh ) += - 1X8" = XBll
Since 5 is the minimizer of ||SX 5 — Sy||1, the left side is non-negative. So,

IXB -yl < |XB* =yl +=- | X5 - XB|
<|XB* =yl +<- (IXB* —ylh + 1XB = ylh)

1 —

SXB* — Sy

Rearranging, and assuming ¢ < 1/2,

~ 1+ ¢
X5 =yl <

1X8* =yl
< (1+42)| X8 — gl

=
-

Using ¢’ = /4 proves the theorem.
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I Results PEII‘NP_E

Theorem 3.1. Let X € R have {1 Lewis weights {witicp), and let 0 < £,6 < 1. Then, for
any N that is|at least O (E—g log E5),, there is a sampling-and-reweighting distribution S({p;}"_;)
satisfying Y . p; = N such that for all'y, if S ~ S({p;}i_,) and B = argmin ||[SX 5 — Sy||1, we have

|XB =yl < (14 u) min [|X'5 —y]|;

with probability 1 — . If 6 = O(1) is some constant, then N at least O (glgdlf:)g d.) rows suffice.

Theorem 3.5. For anyd > 2, e < 55, 0 < L there exist sets X € R, Y € R of inputs and labels,
and a distribution P on X XY such thu,t any uEJO? ithm which solves Problem 2, with ¢ = 1, requires
at least m = Q(gg + Elg log % + dlog %) samples.

« which indicates that the proposed method is near optimal
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