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From Pseudo-Labels Balancing to Dynamic Threshold
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A 7/
—— Supervised algorithm decision boundary

-- Optimal decision boundary

Consistency Regularization(Smoothness)
The model’s output should remain unchanged when the input is

perturbed.

Entropy Minimization(Low-density)
The classifier’s decision boundary should not pass through high-
density regions of the marginal data distribution.

(@) Smoothness and low-density assumptions.
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I Motivation
Even when networks are trained on balanced data, the
pseudo-labels are still highly class-imbalanced.

Biases in Semi-supervised Learning

A student model will inherit the implicitly imbalanced
pseudo-labels and, in turn, reinforces the teacher model’s
biases. Once confusing samples are wrongly pseudo-labeled,
the mistake is almost impossible to be self-corrected.

But where exactly do the biases come from?

The blame for the pseudo-label bias can be largely
attributed to inter-class confounding.
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Source Data: = Optimize Teacher
Labeled Model
Target Data: l . Optimize Student
B — -
Unlabeled Pseudo-Labeling Model
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(b) FixMatch on CIFAR10 SSL
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(a) FixMatch

Figure 6. The cause for pseudo-label biases can be partially at-
tributed to inter-class confounding. For example, FixMatch of-
ten misclassifies “ship” as “plane”. The confusion matrix of Fix-
Match’s and our DebiasPL’s pseudo-labels are visualized.

(b) DebiasPL
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confounder

X « M - D - Y causes the mediator

spurious correlation even if X has
nothing to do with the predicted Y.
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- \ _______________
|IX = D = Y respeCtS the Inter- I IrM: Momentum D: Projection on Head\|
| relationships of the semantic : |
'\concepts in classification. |

: X: Feature Y: Prediction :
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This paper establishes a causal inference
framework and provides a fundamental theory
for reweighting/re-sampling heuristics.

SGD Momentum in
Long-Tailed Dataset

SGD Momentum in
Balanced Dataset
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We need the direct causal effect along path X — Y.
Total Direct Effect (TDE)

argenéax TDE(Y;) = [Yq =ildo(X = x)| — [Ygq = t|do(X = xy)]

P(Y = y|X = x) isthe probability that Y = y conditional on finding X = x, while P(Y = y|do(X =
x)) is the probability that Y = y when we intervene to make X =

Removes the “bad” confounder
bias while keeps the “good”

mediator bias Figure 3: The TDE inference (Eq. (2))
for the long-tailed classification after de-
confounded training.  Subtracted left:
[Ya = i|do(X = )], minus right: [Yg4 =
i‘dO(X = SE[])].
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Controlled Direct Effect (CDE)

/\

CDE(Y;) = [¥;|do(4;), do(D)] ~ [Vildo(4), do(D)) 0 0 N
é * Yi prediction
- D: mediator
. . o 1- \CDE ?\‘ M: model bias
Measuring the counterfactual outcome via visiting all [o o] 0 3@ e

training samples is significantly computational expensive.

Figure 8. Causal graph of debiasing with counterfactual reasoning.

Use Approximated Controlled Direct Effect (ACDE) instead,
which assumes that the model bias is not drastically changed.

[Yi|do(A),do(D)] == |pk—mp+(1—m)— > pi

l k=1
Probability distribution for instance
a(x;,) obtained via a softmax function
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Weakly augmented Strongly augmented

| | '
L, = — Z]l[max(p(a(ﬂfz‘))) > 7]-H(;, p(B(z;)))

wB Demand a larger margin
between hardly biased and
highly biased classes
24, — Ay,
fi = f(a(x;)) —llog p LamL = —log I

(zy; —Ay;) elzr—Ayg)
& + €
debias factor Yt

Predicti .
_ B — | | Deesnd —> 2ot
where f(a(-)) refers to logits of Weskly e t
weakly-augmented unlabeled W Avgmented Ten b
|nitance,4 = )\log( o) forj € {1,....C} Uniabeled \' !
z = f (/8 (372)) Data ___’ Student » Marginal

' Model " predictions ' LOSS
Strongly
Augmented



ExUHRISHLET SRR
I M et h O d ParN EE FPAttern Recognition ano NEural Computing

Algorithm 1: PyTorch-style pseudocode for semi-supervised learning with DebiasPL

p-hat = torch.enes([1l, C]) / C
foar (x, target), u in leoader:
®, u-s, uw = weak(x), strong(u), weaku)

1x, lus, luw = model (x, u.s, u_w)

puw = F.softmax(luw - tau * torch.leg(p-hat), dim=1)
max.-probs, pseudo.label = torch.max(p.uw, dim=-1)
mask = max_probs.ge(thresh).float ()

p-hat = momentum +* p_hat + (1 - momentum) * p_uw.detach().mean(dim=0)

loss.x = F.cross.entropy(l=x, target)

lus = 1lus + lambda * torch.log(p.hat)
lassu = (F.cross entropy(lus, pseudo_label, reduction='none’) * mask) .mean/()

loss = loss.x + lambda.u + loss.u
loss.backward()
optimizer.step()

model .momentum.update_ema ()
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CIFARI10-LT: # of labels (percentage)

CIFARI10: # of labels (percentage)

Method =100 =200

1244 (1[}‘;’;) 3726 (30%) 1125 (10%) 3365 (30%) 40 (0.08%) 80 (0.16%) 250 (2%)
UDA [6%] § - - - - 71.0 £6.0 - 91.2 £1.1
MixMatch [5] § 604 £2.2 - 54519 - 519 +11.8 80.8 £1.3 89.0 £0.9
CReST w/ DA [67] 759 £0.6  77.6 =0.9 64.1 £0.22 67.7 0.8 - - -
CReST+ w/ DA [67] 78.1 =0.8 79.2 £0.2 67.7 14 705 £0.6 - - -
CoMatch w/ SiImCLR [ 12, 37] - - - - 92,6 £1.0 94.0 £0.3 95.1 =0.3
FixMatch [57] § 67.3 +1.2 73.1 £0.6 59.7 £0.6  67.7 0.8 86.1 3.5 92.1 £0.9 94.9 £0.7
FixMatch w/ DA w/ LA [4,38,57,67] § 704 £2.9 - 624 +12 - - - -
FixMatch w/ DA w/ SimCLR [4,12,57]§ - - - - 89.7 4.6 93.3 £0.5 94.9 £0.7
DebiasPL (w/ FixMatch) 79.2 +£1.0 80.6 £0.5 71.4 £2.0 74.1 £0.6 94.6 +1.3 952 £0.1 954 +0.1
gains over the best FixMatch variant +8.8 +7.5 +9.0 +6.4 +4.9 +1.9 +0.5

Table 2. Without any prior knowledge of the marginal class distribution of unlabeled/labeled data, the performance of DebiasPL on both
CIFAR and CIFAR-LT SSL benchmarks surpasses previous SOTAs, which are either designed for balanced data or meticulously tuned
for long-tailed data. DibasMatch is experimented with the same set of hyper-parameters across all benchmarks. § states the best-reported
results of counterpart methods, copied from [32], [57] or [67]. y: imbalance ratio. We report results averaged on 5 different folds.
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Method B.S.  #epochs  Pre-train top-1 1% op3 top-T 0.2% top3
FixMatch w/ DA [4,57] 4096 400 X 534 74.4 - -

FixMatch w/ DA [4,57] 4096 400 v 59.9 79.8 - -

FixMatch w/ EMAN [9,57] 384 50 v 60.9 82.5 43.6" 64.6"
DebiasPL w/ FixMatch 384 50 v 63.1 (+2.2) 83.6 (+1.1) 479 (+3.7) 69.6 (+5.0)
DebiasPL (multi-views) 768 50 v 65.3 (+4.4) 85.2(+2.7) 51.6 (+8.0) 73.3(+8.7)
DebiasPL (multi-views) 768 200 v 66.5 (+5.6) 85.6 (+3.1) 523 (+8.7) 73.5(+8.9)
DebiasPL (multi-views) 1536 300 v 67.1 (+6.2) 85.8(+3.3) - -

DebiasPL w/ CLIP [41Y] 384 50 v 69.1 (+8.2) 89.1 (+6.6) 68.2 (+24.6) 88.2 (+23.6)
DebiasPL w/ CLIP (multi-views) [+9Y] 768 50 v 70.9 (+10.0) 89.3 (+6.8)  69.6 (+26.0) 88.4 (+23.8)
CLIP (few-shot) [19, 73] 256 50 v 534 - 40.0 -

SwAV [11] 4096 50 v 53.9 78.5 - -
SimCLRv2 (+ Self-distillation) [ 3] 4096 400 v 60.0 79.8 - -

PAWS (multi-crops) 7 [2] 4096 50 v 66.5 - - -

CoMatch (multi-views) [32] 1440 400 v 67.1 87.1 - -

Table 3. DebiasPL delivers state-of-the-arts results on ImageNet-1K semi-supervised learning with various fractions of labeling samples,
especially for extremely low-shot settings. All results are produced with a backbone of ResNet-50. {: unsupervised pre-trained for 800
epochs, except for PAWS [2], which is pre-trained for 300 epochs with pseudo-labels generated non-parametrically. *: reproduced.
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Figure 2. FixMatch’s pseudo-labels are highly imbalanced across
different training stages, even though the unlabeled and labeled data
it trains on is class-balanced. In contrast, DebiasPL produces nearly
balanced pseudo-labels at late stages. The probability distributions

of FixMatch and DebiasPL are averaged over all unlabeled data.

The class indices are sorted by average probability. We conduct
experiments on CIFAR10 with 4 labeled instances per class.

FarN.C
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Method

Labeled: LT; 10% labeled, v = 200

Unlabeled: LT

Unlabeled: Balanced

FixMatch [57]
DebiasPL

62.3+1.6
71.4 £2.0 (+9.1)

72.1 £2.3
83.5 £2.4 (+11.4)

Table 4. DebiasPL consistently improves the performance of SSL
when the unlabeled data is either the sames as labeled data, i.e.,
long-tailed distributed, or different with labeled data, i.e., balanced
distributed across semantics. We report results averaged on 5 folds.

FixMatch MixMatch UDA
Baseline 897+ 4.6 475+ 11.5 29.1 £59
+ DebiasPL 946 - 1.3 61.7 + 6.1 43.2 + 5.2

Table 5. DebiasPL is a universal add-on. Top-1 accuracies of var-
ious SSL methods on CIFAR10, averaged on 5 folds, are compared.
4 instances per class are labeled.

Debiasing  Magirnal Loss CIFARI0 CIFARI10-LT

86.1 73.5
v 933 79.6
v v 94.6 80.6

Table 7. Ablation study on the contribution of each component
of DebiasPL. Experimented on CIFAR10 and CIFAR10-LT (v =
100) SSL, in which 4 out of 5,000 samples are labeled per class for
CIFARI10 and 30% instances are labeled for CIFAR10-LT. Results
averaged over 5 different folds are reported.

by introducing the marginal loss is relatively smaller than
the unbalanced benchmark.

A 00 025 05 075 1.0 2.0
DebiasPL || 73.5 795 806 805 805 77.79

Table 8. Ablation study on CIFARIO-LT (y = 100) semi-
supervised learning with DebiasPL under various weight A\ of
debiasing module and marginal loss. 30% samples are labeled.
The model is identical to FixMatch when A = 0. Results averaged
over 5 different folds are reported.
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m)— > 1(max(gy) >[7] H(Gs, @)

T Is a fixed threshold(0.95)

Figure 1: Diagram of FixMatch. A weakly-augmented image (top) is fed into the model to obtain
predictions (red box). When the model assigns a probability to any class which is above a threshold
(dotted line), the prediction is converted to a one-hot pseudo-label. Then, we compute the model’s
prediction for a strong augmentation of the same image (bottom). The model is trained to make its
prediction on the strongly-augmented version match the pseudo-label via a cross-entropy loss.

Either use all unlabeled
examples or the unlabeled
examples with a fixed high-
confidence prediction during
the training progress.

—>

There are too many correct
pseudo labeled examples
eliminated, and too many
wrong pseudo labeled examples
selected.
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(a) Number of selected unlabeled examples with correct (b) Number of selected unlabeled examples with wrong
pseudo labels pseudo labels

Figure 1. An example of experimental results on Wide ResNet-28-8 for CIFAR-100 with 400 labeled images illustrates the reason of
dynamically selecting unlabeled data to train learning models. Pseudo labels are generated based on the prediction models. FixMatch
selects unlabeled example if its confidence prediction is greater than (0.95, while the proposed Dash algorithm selects unlabeled example
based on a dynamic threshold through optimization iterations. (a) The proposed Dash selects more examples with correct pseudo labels
than that of FixMatch. (b) The proposed Dash maintains much more examples with wrong pseudo labels at the beginning but it will drop
off more examples with wrong pseudo labels after several epochs, comparing to FixMatch.

Can we design a provable SSL algorithm
that selects unlabeled data with dynamic thresholding?
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Use x to denote the feature, y to denote the label. For simplicity, let £ denote the input-label pair (X, y)

§ = (x,y)

We denote by P the underlying distribution of data pair & , then & ~ P . The goal is to learn a model
w € R? via minimizing an optimization problem whose objective function F(w) is the expectation of
random loss function f(w; &)

min, F(w) 1= Bewp [ (wi€)] - F(W3&) = Hlyi p(wixi)) =3 -t [ 2 )

weRd ZJ , exp(p; (Wi x;))

Labeled examples D; := {(x;,y:),? = 1,...,N;} Unlabeled training examples D,, := {(x},¥%),i=1,..., N}

Supervised loss  Fi(w) : lef w; &)
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Threshold on prediction or loss?

With supervised model w and weak augmentation o, we can get the class prediction for a weakly-
augmented unlabeled sample x;}'

It creates a pseudo label by

y; = argmax(h;)

Since the new dynamic threshold is not fixed, we let it rely on the optimization iteration t and it
IS denoted by p;. Then the unsupervised loss is given by

N _— Loss function e s .
=N Z fu(w; ED| < p1) fulw; €) i N - Prediction |
| Fu(w) = > Iuax(ho)]> 7 HFE p(w, T(x1)
H(3e, p(w; T(x1))) N RS '

T (z) is the strongly-augmented version of x
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N _— Loss function S R .
= 7, 2 8 < pfulwi ) i . - Frediction
l Fu(w) = - > Imax(hy)| > 1) H(FY, p(w, T(x})) |
H(FY, p(w; T(x4))) e SR X
] o Prediction Pseudo-label
Why threshold on loss is better than on prediction? [ I
> —
-.-I-- —————
Threshold on prediction only contains the information of weakly |
augmented samples, while threshold on loss function includes both Prediction H(p.q)
strongly and weakly augmented samples. - P, 3
II.I-.

How to set dynamic threshold p,?

=== Dynamic Threshold (y=1.1)
Dynamic Threshold (y=1.01)
== Dynamic Threshold (y=1.005)
= Dynamic Threshold (y=1.004)
= = Fixed Threshold

¢ 1= Cy~ =15

o
fe)

Where € > 1,y > 1 are two constants. 2 can be determined by
averaged loss of labeled examples during warm-up stage.

threshold
o
=y

o
[N}

%-.h
£l
|_L
1’3"
o
o

&ED; 0 200 400 600 800 1000
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Algorithm 1 Dash: Semi-Supervised Learning with Dynamic Thresholding

Input: learning rate 7); and mini-batch size m for stage one, learning rate 1 and parameter /n of mini-batch size for stage
two, two parameters C' > 1 and « > 1 for computing threshold, and violation probability 9.
/l Warm-up Stage: run SGD in 7§ iterations.
Initialization: ug = wg
fort=0,1.....,7; — 1 do
Sample mg examples & ; (i = 1,...,mp) from Dy,
Urs1 = Uy — 708 Where & = - 3 V fo(ur; &)
end for
// Selection Stage: run SGD in T’ iterations.
Initialization: wi = ur,.
Compute the value of p as in (16). // In practice, p can be obtained as in (17).
fort=1.,....T do
1) Sample n; = m~'~! examples from D,,, where the pseudo labels in D,, are generated by FixMatch
2) Set the threshold p; = Cy~ (¢~ 1),
3) Compute truncated stochastic gradient g; as (18).
4) Update solution by SGD using stochastic gradient g; and learning rate 1: w; 1 = w; — ng;.
end for
Output: wp

Warm up stage and selection stage
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Table 1. Comparison of top-1 testing error rates for different methods using Wide ResNet-28-2 for CIFAR-10, Wide ResNet-28-8 for
CIFAR-100 (in %, mean =+ standard deviation).

CIFAR-10 CIFAR-100

Algorithm 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels
[T-Model - 54.26+3.97 14.01£0.38 - 57.25+0.48 37.88+0.11
Pseudo-Labeling - 49.78+0.43 16.09+0.28 - 57.38+0.46 36.21+0.19
Mean Teacher - 32.32+2.30  9.19£0.19 - 53.91+£0.57 35.83+0.24
MixMatch 47.54+11.50 11.05+0.86 6.424+0.10 67.61+£1.32 39.94+0.37 28.31+0.33
UDA 29.05+£5.93  8.82+1.08  4.88+0.18 59.28+0.88 33.13+0.22 24.50+£0.25
ReMixMatch 19.104£9.64 5444005 4.724+0.13 44.28+2.06 27.43+0.31 23.03+0.56

RYS (UDA) - 5.53+£0.17  4.7540.28 - - -

RYS (FixMatch) - 5.05+£0.12  4.3540.06 - - :

FixMatch (CTA) 11.39+£3.35  5.07£0.33  4.31£0.15 49.95+3.01 28.64+0.24 23.18+0.11
Dash (CTA, ours)  9.16t4.31 4.78+0.12  4.13+£0.06 44.83+1.36 27.85+0.19 22.77+0.21
FixMatch (RA) 13.81+£3.37  5.07+£0.65  4.26+0.05 48.85£1.75 28.294+0.11 22.60+0.12
Dash (RA, ours) 13.224+3.75  4.56+0.13  4.0840.06 44.76+096 27.18+0.21 21.97+0.14
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Table 2. Comparison of top-1 testing error rates for different methods using Wide ResNet-28-2 for SVHN and Wide ResNet-37-2 for

STL-10 (in %, mean =+ standard deviation).

SVHN STL-10
Algorithm 40 labels 250 labels 1000 labels 1000 labels
[1-Model - 18.96+1.92 7.54+0.36 26.2340.82
Pseudo-Labeling - 20.214+1.09 9.94+0.61 27.9940.83
Mean Teacher - 3.57+0.11  3.42+0.07 21.4342.39
MixMatch 42.55+14.53 3.98+0.23  3.50+0.28 10.41+0.61
UDA 52.63+20.51 5.694+2.76 2464024  7.66+0.56
ReMixMatch 3.3440.20 2924048  2.65+0.08 5.234+0.45
RYS (UDA) - 245+0.08  2.3240.06 -
RYS (FixMatch) - 2.63+0.23  2.3440.15 -
FixMatch (CTA) 7.65+7.65 2.64+0.64  2.36+0.19 5.1740.63
Dash (CTA, ours)  3.14£1.60 2.3840.29  2.144+0.09  3.96+0.25
FixMatch (RA) 3.961+2.17 248+0.38  2.28+0.11  7.98+1.50
Dash (RA, ours) 3.03+1.59 2.17+0.10  2.03+0.06  7.26+0.40

Dash has large improvement when the labeled examples is small
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Table 3. Comparison of top-1 testing error rates for different values
of v on CIFAR-10 (in %).

250 labels
4000 labels

485 476 499 482
439 428 4.11
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Table 4. Comparison of top-1 testing error rates for PL. and Dash
with PL on CIFAR-10 (in %).

Algorithm PL  Dash-PL

250 labels  49.78 46.90

4000 labels 16.09 15.59

Pseudo-Labeling
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