

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

Junnan Li Caiming Xiong Steven C.H. Hoi Salesforce Research {junnan.li,cxiong,shoi}@salesforce.com

ICCV-2021

Background

Semi-Supervised Learning

Semi-supervised learning has been an effective paradigm for leveraging unlabeled data to reduce the reliance on labeled data.

Consistency Regularization

The model should remains same or similar output distribution when add noise to input images. $||p(y|\operatorname{Aug}(x)) - p(y|\operatorname{Aug}(x))||_2^2$

• Entropy Minimization

The entropy of the model on unlabeled data should be low as much as possible

- MixMatch NeurIPS'19
- ReMixMatch ICLR'20
- UDA NeurIPS'20
- FixMatch NeurIPS'20

Background

MixMatch NeurIPS'19

 $\hat{\mathcal{X}} = ((\hat{x}_b, p_b); b \in (1, \dots, B)) // Augmented labeled examples and their labels$ $\hat{\mathcal{U}} = ((\hat{u}_{b,k}, q_b); b \in (1, \dots, B), k \in (1, \dots, K)) // Augmented unlabeled examples, guessed labels$ $<math>\mathcal{W} = \text{Shuffle}(\text{Concat}(\hat{\mathcal{X}}, \hat{\mathcal{U}})) // \text{Combine and shuffle labeled and unlabeled data}$ $<math>\mathcal{X}' = (\text{MixUp}(\hat{\mathcal{X}}_i, \mathcal{W}_i); i \in (1, \dots, |\hat{\mathcal{X}}|)) // \text{Apply MixUp to labeled data and entries from } \mathcal{W}$ $\mathcal{U}' = (\text{MixUp}(\hat{\mathcal{U}}_i, \mathcal{W}_{i+|\hat{\mathcal{X}}|}); i \in (1, \dots, |\hat{\mathcal{U}}|)) // \text{Apply MixUp to unlabeled data and the rest of } \mathcal{W}$

a. Distribution Alignment

$$ilde{q} = ext{Normalize} \left(q imes rac{p(y)}{ ilde{p}(y)}
ight)$$

ReMixMatch ICLR'20

enforces that the aggregate of predictions on unlabeled data matches the distribution of the provided labeled data.

b. Augmentation Anchor

Entropy minimization Sharpen $(p,T)_i := p_i^{\frac{1}{T}} / \sum_{j=1}^L p_j^{\frac{1}{T}}$

 $\mathcal{L}_{\mathcal{X}} = \frac{1}{|\mathcal{X}'|} \sum_{x, p \in \mathcal{X}'} \mathrm{H}(p, \mathrm{p}_{\mathrm{model}}(y \mid x; \theta))$ $\mathcal{L}_{\mathcal{U}} = \frac{1}{L|\mathcal{U}'|} \sum_{u, q \in \mathcal{U}'} \|q - \mathrm{p}_{\mathrm{model}}(y \mid u; \theta)\|_{2}^{2}$

 $\mathcal{L} = \mathcal{L}_{\mathcal{X}} + \lambda_{\mathcal{U}} \mathcal{L}_{\mathcal{U}}$

Background

• FixMatch NeurIPS'20

If max(confidence) > T (0.95/0.9)

$$\ell_{s} = \frac{1}{B} \sum_{b=1}^{B} \mathrm{H}(p_{b}, p_{\mathrm{m}}(y \mid \alpha(x_{b}))) \qquad \ell_{u} = \frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(\max(q_{b}) \ge \tau) \mathrm{H}(\hat{q}_{b}, p_{\mathrm{m}}(y \mid \mathcal{A}(u_{b})))$$

Motivation

- Pseudo-labeling (also called self-training) methods heavily rely on the quality of the model's class prediction, thus suffering from confirmation bias where the prediction mistakes would accumulate.
- Self-supervised learning (Pre-trained) methods are task-agnostic, and the widely adopted contrastive learning may learn representations that are suboptimal for the specific classification task.

consistency regularization + entropy minimization + contrastive learning + graph-based SSL

- CNN f
- Classification head h
- Projection head g

- Aug_w refers to weak augmentations
- Aug_s refers to strong augmentations

CoMatch

•

DA prevents the model's prediction from collapsing to certain classes.

CoMatch

Size: $\mu B imes \mu B$

Graph-based contrastive learning

CoMatch

• Loss Function

$$\mathcal{L}_{x} = \frac{1}{B} \sum_{b=1}^{B} H(y_{b}, p(y|\operatorname{Aug}_{w}(x_{b}))) \qquad \mathcal{L}_{u}^{cls} = \frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(\max q_{b} \ge \tau) H(q_{b}, p(y|\operatorname{Aug}_{s}(u_{b}))) \qquad \mathcal{L}_{u}^{ctr} = \frac{1}{\mu B} \sum_{b=1}^{\mu B} H(\hat{W}_{b}^{q}, \hat{W}_{b}^{z})$$

Mathad		STL-10			
Method	20 labels	40 labels	80 labels	250 labels	1000 labels
MixMatch [2]	27.84±10.63	51.90±11.76	80.79±1.28	88.97±0.85	38.02±8.29
FixMatch [32]	82.32±9.77	86.12 ± 3.53	$92.06{\pm}0.88$	$94.90 {\pm} 0.67$	65.38±0.42
FixMatch [32] w. DA [1]	83.81±9.35	$86.98 {\pm} 3.40$	$92.29 {\pm} 0.86$	$94.95 {\pm} 0.66$	66.53±0.39
CoMatch	87.67 ±8.47	93.09 ±1.39	93.97 ±0.62	95.09 ±0.33	79.80 ±0.38

Table 1: Accuracy for CIFAR-10 and STL-10 on 5 different folds. All methods are tested using the same data and codebase.

- For CIFAR-10: Wide ResNet-28-2
- For STL-10: ResNet-18
- Weak Augmentation: standard crop-and-flip
- Strong Augmentation: RandomAugment
- Strong Augmentation':

```
from torchvision import transforms as T
color_jitter = T.ColorJitter(0.4,0.4,0.4,0.1)
transforms.Compose([
   T.RandomApply([color_jitter], p=0.8)
   T.RandomGrayscale(p=0.2)])
```


Self-supervised	Method	#Epochs	#Paramters	Top-1 Label fraction		Top-5 Label fraction	
Pre-training			(trans/test)	1%	10%	1%	10%
None	Supervised baseline [38]	~ 20	25.6M / 25.6M	25.4	56.4	48.4	80.4
	Pseudo-label [19, 38]	~ 100	25.6M / 25.6M	-	-	51.6	82.4
	VAT+EntMin. [26, 12, 38]	-	25.6M / 25.6M	-	68.8	-	88.5
	S4L-Rotation [38]	~ 200	25.6M / 25.6M	-	53.4	-	83.8
	UDA (RandAug) [36]	-	25.6M / 25.6M	-	68.8	-	88.5
	FixMatch (RandAug) [32]	~ 300	25.6M / 25.6M	-	71.5	-	89.1
	FixMatch w. DA	~ 400	25.6M / 25.6M	53.4	70.8	74.4	89.0
	CoMatch	~ 400	30.0M / 25.6M	66.0	73.6	86.4	91.6
PIRL [25]		~ 800	26.1M / 25.6M	30.7	60.4	57.2	83.8
PCL [21]		~ 200	25.8M / 25.6M	-	-	75.3	85.6
SimCLR [5]	Fine-tune	~ 1000	30.0M / 25.6M	48.3	65.6	75.5	87.8
BYOL [13]		~ 1000	37.1M / 25.6M	53.2	68.8	78.4	89.0
SwAV [3]		~ 800	30.4M / 25.6M	53.9	70.2	78.5	89.9
MoCov2 [7]	Fine-tune	~ 800	30.0M / 25.6M	49.8	66.1	77.2	87.9
	FixMatch w. DA	~ 1200	30.0M / 25.6M	59.9	72.2	79.8	89.5
	CoMatch	~ 1200	30.0M / 25.6M	67.1	73.7	87.1	91.4
SimCLRv2* [6]	Fine-tune	~ 800	34.2M / 29.8M	57.9	68.4	82.5	89.2
	Teacher distillation	~ 2400	829.2M / 29.8M	73.9	77.5	91.5	93.4

Table 2: Accuracy for ImageNet with 1% and 10% of labeled examples. SimCLRv2* [6] uses larger models for training and test.

• ImageNet ILSVRC-2012: ResNet-50

Figure 3: Plots of different methods as training progresses on ImageNet with 1% labels. (a) Accuracy of the confident pseudo-labels *w.r.t* to the ground-truth labels of the unlabeled samples. (b) Ratio of the unlabeled samples with confident pseudo-labels that are included in the unsupervised classification loss. (3) Top-1 accuracy on the test data.

Figure 4: Plots of ablation studies on CoMatch. The default hyperparameter setting achieves 57.1% (ImageNet with 1% labels, trained for 100 epochs). FixMatch with EMA pseudo-label achieves 43.9%. (a) Varying the threshold T which controls the sparsity of edges in the pseudo-label graph. T = 1 reduces to self-supervised contrastive learning. (b) Varying the weight λ_{ctr} for the contrastive loss. $\lambda_{ctr} = 0$ removes contrastive learning. (c) Varying α , the weight of the EMA model's prediction in generating pseudo-labels. $\alpha = 1$ reduces to pseudo-labeling with mean teacher [33]. (d) Varying K, the number of samples in both the memory bank and the momentum queue.

• Transfer of Learned Representations

The number of samples per-class (k) in the downstream datasets

PASCAL VOC2007 object classification and Places205 for scene recognition

Method	#ImageNet label	s #Pre-train epoch	s $k=4$	<i>k</i> =8	<i>k</i> =16	<i>k</i> =64	Full
Supervised	100%	90	73.51±2.1	2 79.60 \pm 0.6	82.75 ± 0.34	85.55±0.12	87.12
MoCov2 [7]	00%	800	70.47±2.1	8 76.74 \pm 0.8	7 80.61±0.53	84.60±0.11	86.83
SwAV [3]	070	400	68.04±2.3	9 75.06 \pm 0.7	3 79.46±0.55	84.24±0.13	86.86
MoCov2 [7]	10%	800	71.82±2.0	9 77.35±0.8	3 81.33±0.50	84.98±0.14	87.05
CoMatch	1 70	400	72.81±1.5	$0 79.18 \pm 0.5$	1 82.30±0.46	85.65±0.17	87.66
MoCov2 [7]	10%	800	73.09±2.0	2 79.37±0.4	0 82.05±0.46	85.41±0.16	87.48
CoMatch	1070	400	74.56 ±2.0	4 80.60 ±0.3	1 83.24 ±0.43	86.07 ±0.16	87.91
			(a) VOC07				
Method	#ImageNet labels	#Pre-train epochs	k=4	<i>k</i> =8	<i>k</i> =16	<i>k</i> =64	<i>k</i> =256
Supervised	100%	90	$27.20{\pm}0.41$	$32.08 {\pm} 0.45$	35.95 ± 0.21	41.81±0.17	45.74 ± 0.14
MoCov2 [7]	0%	800	$25.34{\pm}0.51$	30.64 ± 0.39	35.08 ± 0.34	42.18±0.10	46.96 ± 0.06
SwAV [3]	070	400	25.32 ± 0.46	$31.00 {\pm} 0.47$	35.65 ± 0.28	42.60 ± 0.11	47.51 ±0.20
MoCov2 [7]	10%	800	26.22 ± 0.50	$31.33 {\pm} 0.40$	35.55 ± 0.35	42.20±0.11	46.95 ± 0.07
CoMatch	1 %0	400	27.15 ± 0.42	$32.36 {\pm} 0.37$	36.56 ± 0.33	$42.97 {\pm} 0.11$	47.32 ± 0.18
MoCov2 [7]	10%	800	27.19 ± 0.47	32.11±0.49	36.00 ± 0.30	42.31±0.13	46.88 ± 0.08
CoMatch	1070	400	28.11 ±0.33	33.05 ±0.46	36.98 ±0.28	43.06 ±0.22	47.10±0.11

(b) Places

Table 3: Linear classification on VOC07 and Places using models pre-trained on ImageNet. We vary the number of examples per-class (k) on the down-stream datasets. We report the average result with std across 5 runs.

Thanks