EIVHAIS T ESRFLH

FAttern Recognition and Newral Computing

\%75" %76’*’ 4@%){;&%; PapNaE

Nanjing University of Aer and Astro|

A Brief Introduction to Machine Unlearning

bk
' Contents S|

1. Introduction
* Reasons for & Main Purpose of Machine Unlearning
 Exact Unlearning & Approximate Unlearning
* Differential Privacy & Machine Unlearning
* Tradeoffs
Evaluation Metrics
Exact Unlearning Algorithms
SISA
4. Approximate Unlearning Algorithms
Descent-to-Delete, Fisher, Influence, DeltaGrad, DeepObliviate

5. Comparison

* Reasons:
Security: after removing adversarial data

Privacy: “right to be forgotten” — not only data itself, but also its impacts on the model
Usability: forauser

Fidelity: bias on African-American offenders
* All these reasons leads to a necessity to design a solution to data deletion.

 The ideal (yet expensive) solution is to update the database and retrain all models when
a deletion request arrives.

But retraining requires enormous computation: large models and frequent deletion requests.

Main purpose of Machine Unlearning (Data Deletion):

Design fast unlearning (deletion) algorithms that produce output models that are
statistically indistinguishable from the models that would have arisen from retraining.

§ Machine Unlearning _aterias| g

U,: an unlearning algorithm for A Retraining in every round
Exact Unlearning:
U, is an unlearning
- y <— Dataset D y <— Dataset D algorithm for A if for all
N A A datasets D, and all
(training) —> Model 6, —> Model 6, _
deletion sequences
{z4, ..., 27}, the following
condition holds. For
R U <— Delete z; y <— Dataset D\{z;} every deletion step t,
= p)) ! >
(deletion) —> Model 4, —> Model 6/ 0; =q 0;
<— Delete z¢ <— Dataset D\{z4, ..., z7}
t=T Uy K A .
(deletion) —> Model 61 —> Model 07

' Approximate Unlearning

Definition of Approximate Unlearning (Ginart et al. 2019):
We say “Uy is an («, f)-unlearning algorithm for A” if for all datasets D

and all deletion sequences {z4, z,, ..., Zz1}, the following condition holds:

for every deletion step ¢,
VE,Pr|0, e E| <e”-Pr|6 € E| +

/ O

Models output by the unlearning algorithm Uy, Models retrained using A

The smaller (a,) are, the stronger unlearning guarantees will become.

' Differential Privacy & Machine Unlearning B g

 Machine unlearning uses the same metric with differential privacy for distributional
closeness, but ...
 DP compares the same algorithm run on different datasets

* Machine unlearning compares different algorithms run on the same dataset

* If Ais differentially private for any data, then it does not learn anything from the
data. In other words, differential privacy is a very strong condition, and most
differentially private models suffer a significant loss in accuracy even for large €.

* But DP tools are useful to machine unlearning
* Noise addition converts distance in parameter space to distance in distribution

* DP reduces dependencies introduced via adaptivity

the data to be deleted depends
on the current unlearned model

J Tradeoffs Lol

Goal: given desired unlearning level («,), and computation budget, design accurate
unlearning algorithms.

Accuracy

Unlearning Computation

Level (a, B)

BUdgEt (and memory)

Boundary Conditions:

* Retraining: high accuracy, optimal (0,0)-unlearning, computationally expensive

* Not Unlearning: optimal accuracy, poor unlearning performance, no computation
* Completely DP Models: Jow accuracy, optimal (0,0)-unlearning , no computation

§ Evaluation Metrics _aterias| g
Suppose hU = U(A(D), D, Dy), h* = U*(A(D), D, Dy)

time taken to obtain h*
Efficiency(hY) =
ff Y() time taken to obtain hV

Effectiveness(hu) = |Mtlést — Mt*est| (M is another performance metric)

° Consistency (correctness guarantee)

» Consistencyg(hg) = 16V — 0*||,

1 Zntestl .

Neest <1=1 ypred,izygred,i
« Consistencyg(hY) = E,[KL(Pr[hY (x)] || Pr[h*(x)]D]

Certifiability (security guarantee)

* Consistency, (hY) :=

vy -]
v |+

 Certifiability(hY) = I(Dy; hY)

« Certifiability(hY) =

J SISA (SSP 2021)

e Sharded « M, :s'" constituent model
« Dy : S”’data spht
e« Dy, 1! hglice in s data split

 |solated « B : data to unlearn
e Sliced

 Aggregated

' Descent-to-Delete (ALT 2021) _BRRERALS

Algorithm 8 Perfect ith unlearning for basic perturbed gradient descent, (Neel et all, [2020).

~

Input: published model parameters 6;_;, dataset DJ);_;, update data point z;_;, number of iterations
T;, noise parameter o > 0.
Output: published unlearned parameters 0;.
1: procedure PGDUNLEARN(@_h Di_1,2zi—1;T;, o)
2: initialise 6} < 0;_
3 D-, — D,,;_] \{Zi_]}
4: fort =1;t <T;;t+ + do
5: 0; < Projg(0;_; —m:VL(0,_,.D;))
6 end for
7 91' «— 9&1
8: draw Z ~ N(0,0°1,)
9: return ﬁ;. = f}? + 7
10: end procedure

et
. .

Projg(0) = argming g ||6 — 6'||2

J Fisher (CVPR 2020)
0 : = SGD(L(Binie, D)) + o F b,

1 =0— F'A+ oF YD,
S—— N——

Newton step noise injection

Avem : = VL(60,D\ D,),

F: The Fisher Information matrix,
which is used as an approximation
to the Hessian as the Fisher matrix
is less expensive to compute.

The authors prove that such a
batch unlearning algorithm can
ensure that

I(Du; U(hg, D, Du)) =0

1 HIHIRALE
' Fisher (CVPR 2020) .o

Algorithm 5 Fisher removal mechanism, (Golatkar et all, [2019; Mahadevan and Mathioudakis, 2021).

Input: trained model parameters #, training dataset D, subset of data to be removed D,,, noise parameter
o, mini-batch size m’.
Output: unlearned model parameters 6¥.
1: procedure FISHERUNLEARN(0, D, D,; o, m’)
2 assign the number of batches s <— [5] (m is the number of samples in D,,)
3 split D,, into s mini-batches D}, D2 ... D$ each of size m’
4: initialise D' «— D
5: initialise 6% < 6
6
7
8
9

for i =1;1 < s; i+ + do
D"« D"\ D},
A<+ VLY, D)

: F' < compute Fisher Information Matrix of L and D’, (Golatkar et all, 2019, Eq. (8))
10: 4 «— ¥ — F1A

11: if o > 0 then

12: draw b ~ N (0, 1)?
13: oY — Y + o F-1/*b
14: end if

15: end for
16: return 6%
17: end procedure

' Influence (ICML 2020) _bariasr| gy

ob’ 8

Lo (0, D) := L(0, D) - D

=0+ H A,

/\

H:=V?L(0,D\ D,) Ay 2 =VIELD, ;)

,%,—1

' Influence (ICML 2020) Bdiiaa

Algorithm 6 Influence removal mechanism, (Mahadevan and Mathioudakis, 2021).
Input: trained model parameters #, original train dataset D, subset of data to be deleted D, , mini-batch
size m/’.
Output: unlearned model parameters Y.

1: procedure INFLUENCEUNLEARN(, D, D, ; m’)

2: assign the number of batches s < [5] (m is the number of samples in D,,)
3: split D,, into s mini-batches D,i, Di,...,D,ﬁ, cach of size m/’
4: initialise D' + D

5% initialise 0¥ « @

6: fori=1;1 <s;1+ + do

T D' <+ D'\ D

8: Ay — VL (9“, Dfﬂ)

0: H « V2L (04, D)
10: oYU — gY + H_].&m_r
11: end for
12: return 6%

13: end procedure

§ DeltaGrad (ICML 2020) 3821255 (g

* At each step of training, t, the model parameters {0, 84, ..., 6;} and the gradients of the
loss function {VL(6,),VL(6,), ..., VL(8;)} are saved.
* Suppose D, ={z;|i € M} € D, m = |M|.

Ui
o4 | 0 — - _tm |WL(9§‘) - Z VL;(6%)
e M
1. Use the Cauchy mean-value theorem in
terms of an integrated Hessian H;
2. Use the L-BFGS algorithm to approximate
the vector product H; - v as a quasi-
Hessian product B; - v
Mt
O 07 — —— n(VL(0,) + By - (67 — 6,))|— ;VLZ(Q?)}

§ DeltaGrad (ICML 2020) R

Algorithm 7 DeltaGrad removal mechanism, (Wu ct all, 2020)
Input: model training parameters 8 := {6,0,,...0;}, training data D, indices of removed training
samples M, stored training gradients VL(8) := {VL(6y), VL(6:),...VL(6;)}, period T, total iteration
number 7', history size k, burn-in iteration number jg, learning rate n;.
Output: unlearned model parameters 64 = 6%.

1: procedure DELTAGRADUNLEARN(O, D, M; VL(8), Ty, T, k, jo, n¢)
2: initialise 04 < 6
3: initialise an array AG < ||
4: initialise an array A© < ||
i £+ 0
6: fort =0t <T;++ do
7 if [(to — jo) (mod Tj) == 0] or t < jo then
8: compute VL(6Y) exactly
9: compute VL(6Y) — VL(0;), using the cached gradient VL(0;)
10: AG|l] < VL(0%) — VL(0;)
11: AB[l] « 04 — 0,
12: (+—(+1
13: compute Bi’ﬂ_l by using exact GD update
14: else
15: Bj, + L-BFGS(AG[—k :], AO[—k :])
16: VL(0%) < VL(6Y) + B;, (6% — 6,) approximate the gradient
17: compute 6%, | via the modified gradient formula, Eq. (5.9), using approximated VL(6%)
18: end if
19: end for
20: return 6%

21: end procedure

- BEarnics| G
' DeepObliviate _aterias| g

The method further improves on the slicing component of SISA by using the so-called
temporal residual memory to identify which intermediate models need to be retrained,
adding approximation into the process.

Unseen Area Deleted Area Affected Area Unaffected Area

A A A
/‘
Dl D2 Dd—l Dd Dd+1 Dd+t Dd+t+1 DB
W = TRAIN({D/;, Day1, ..., Dagri}ha—1) ® (hp © hays)

\Da - D\ {2}

' DeepObliviate _Brnries| g

The value of t is determined by the temporal residual memory. The authors define the
temporal residual memory as the ¢! distance (or Manhattan distance) between the
influence of the deleted data z on successive models when z is included in the training and
when it is not. Formally, the temporal residual memory At at step t is:

At = ||I(Dd+t|hd+t—1) — I(Dd+t|h£l]+t—1)”1’
where I(Dilhi—l) = hi @ hi—l'

The authors use detrended fluctuation analysis (DFA) to eliminate noise in A and
systematically determine whether A has stabilized. DFA is used to determine the statistical
self-affinity of a time-series signal by fitting At with a decaying power-law function, whose
derivative is easily-computable and can be used to determine stationarity.

Vi BRAERALS
' DeepObliviate @~ - i

Algorithm 9 Unlearning with DeepObliviate, (He et all, |2021).

Input: parameters for intermediary trained models @ = {6, ...,0p}, training data D = D, U---U Dp,
data point to be removed z € Dy, stationarity hyperparameter €.
Output: unlearned model A¥.

1: procedure DEEPOBLIVIATEUNLEARN(O, D, z;)

2 initialisc hY < hq_1

3 initialisc 9?_ L < 04—

4 Dy <+ Dy \ {Z}

5: fort =0t < B—-d;t++ do

6: h* + TRAIN(Dg,¢ | AY)

7 9? by hY get parameters from hY

8: compute temporal influence Vg < 0444 — 0441 of Dgyyp on 04441
9: compute temporal influence V¥, < 64, — 64, | of Dy on 6%, ,
10: compute temporal residual memory Agyy < ||[Vaye — VA5

11: compute power-law exponent using DFA « < DFA({Ag4, Agi1, - -, Adyt})
12: Y(z) =ax ™ +b

13: f(z) :=0Y(x)/0r =a-(—a) -z

14: a,b < argmin, , (Y (r) — Ag) 71sing least squares, = € {d,...,d +t}
15: g+ f(d+1)

16: if |g| < € then

17: break

18: end if

19: end for

20: M «— " & (hg © hais)

21: {Qd,...,6d+t}{—{9&‘}...,93“+£
22: Return h

23: end procedure

' Comparison

BRI @
Nanjing University of Aeronautics and Astronautics

Unlearning

Exact
Unlearning

Approximate
Unlearning

start from
optimized
models

start from
initialized
models

DeepObliviate
(based on SISA)

First-order
update

Second-order
update

DeltaGrad

Descent-to-
Delete

Fisher
(remaining data)

Influence
(deleted data)

' Comparison

HIERTRELS

nnnnnnnnn iversity of Aeronautics and Astronautics

Unlearning Type

Method Applicability Properties ﬂfcéfliii{ailiitiig
SISA Incrcm;iljgglzatralncd R];ﬁj;t Fxcact
DaRE %{%Etg;b Exact Exact
Fisher fi SLES; Approximate| 3.3, 33.4 kNATs® U[gyg;(g]?;; imﬂ{)SJ)
Influence Lipﬁfh?1; zBIir; sian Ap%szf e (¢, 0)-certified " [ﬁ’f ‘%E T’.;r'::[Tn/)SJ)
puacrat | S0, s o B Rpproingt s
DCE)L;EE:U_ (BDUHdEdE,;i};;];ﬁ;;hﬂesﬂaﬂ)h Apg;‘:’;il;atﬂ (€, 9)-certified
o learning o 0 — 005

. B REMRALS
Performance
Method Efficiency Effectiveness Consistency
min |g. mean| max min g. mean max
Bourtoule 1[1.36x| 2.49x | 4.63x [< 2% (18.76%)
-1 1 a " .
SISA ot all (2021) Exact
Heetall [14.0x| 39.6x | 75.0x [<5% (15.1%)
@o21)
b min dypax 10x | 366x | 9735x < 0.5%
DaRE Max dymax | 145% | 1272x | 35856% | < 2.5% Hxact
. m' = [m/8] |1.0x| 3.3x | 36.8x ~ 0.0%
Fisher m =m | 1b5x | 13.0x | 2824x | < 02% N/A
e m' = |[m/8] [0.3x| 5.9x 75.7% < 0.55%
Influence m' =m 2.5x | 38.2x | 215.1x% < 0.57% N/A
DeltaGrad? 1.6x | 2.7x | 6.5x ~00% |1.7x107%1.1 x 1073|1.4 x 10~*
PGD 1+Z 'log(en/\/p) p/(e*€*n?)
o , 3 2 VA%
Descent-to- sRPGD Z-5(en/\/pP)5 N/A (e-n,:r)
e _3 VP
Delete wRPGD I77\/en/\/p PV
DPGD AL logm, rep(-Tn'2)
n oz 4+ log(en/\/p)} Zn? T e
DeenObliviatef min & 6.17x| 13.97x | 45.45% < 0.18% 97.25 98.82 99.95
P viare e=0.1 9.26 x| 22.81x | 66.67x < 0.35% 95.78 97.61 99.85

