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Two articles on Contrastive Learning
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' Contrastive learning
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Figure 2. Illustration on a diving sequence. The green dashed box
represents the scene and the red box means motion area. The two
clips have the same background but distinct motions. Drawing
such positive pairs closer inclines the model towards static bias.




§ Method

Figure 4. The contrastive learning framework with the proposed
FAME. We first randomly sample two clips from a video and use
FAME to generate new clips by composing the original foreground
onto various backgrounds from other videos. Then, we feed the
augmented clips into the existing contrastive learning scheme and
perform self-supervised pretraining.
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J Experiments

(b) Results of our approach FAME.

Figure 1. Class-agnostic activation map [*] visualization of impor-
tant areas. The heatmap indicates how much the pretrained model
attends to the region. Compared to the conventional approach, our
method mitigates the background bias significantly.
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Action Recognition: A video clip contains a clear action,input a video, and output its action classification

Method Backbone Pretrain Dataset Frames Res. Freeze UCF101 HMDB5I
CBT [49] S3D Kinetics-600 16 112 v 54.0 29.5
CCL [33] R3D-18  Kinetics-400 16 12 v 52.1 27.8
MemDPC [22] R3D-34  Kinetics-400 40 224 54.1 30.5
RSPNet [6] R3D-18  Kinetics-400 16 112 v 61.8 42.8
MLRep [43] R3D-18  Kinetics-400 16 12 v 63.2 33.4
FAME (Ours) R(2+1)D  Kinetics-400 16 112 v 72.2 42.2
VCP [38] R(Q2+1)D  UCF101 16 112 X 66.3 32.2
PRP [64] RQ2+1)D  UCF101 16 12 X 72.1 35.0
TempTrans [29] R(2+1)D  UCF101 16 112 X 81.6 46.4
3DRotNet [20] R3D-18  Kinetics-400 16 12 X 62.9 33.7
Spatio-Temp [55] C3D Kinetics-400 16 12 X 61.2 334
Pace Prediction [560] R(2+1)D Kinetics-400 16 112 X 77.1 36.6
SpeedNet [4] S3D-G Kinetics-400 64 224 X 81.1 48.8
VideoMoCo [41] R2+1)D Kinetics-400 32 12 X 78.7 49.2
RSPNet [6] RQ2+DD  Kinetics-400 16 112 X 81.1 44.6
MLRep [43] R3D-18  Kinetics-400 16 12 X 79.1 47.6
ASCNet [26] R3D-18  Kinetics-400 16 112 X 80.5 523
SRTC [69] RQ2+1)D  Kinetics-400 16 12 X 82.0 51.2
FAME (ours) R(2+1)D  Kinetics-400 16 12 X 84.8 53.5
DSM [53] 13D Kinetics-400 16 224 X 74.8 52.5
BE [54] 13D Kinetics-400 16 224 X 86.8 55.4
FAME (ours) 13D Kinetics-400 16 224 X 88.6 61.1

Table 5. Comparison with the existing self-supervised video representation learning methods for action recognition on UCF101 and
HMDBS51. To compare fairly, we list each work’s setting, including backbone architecture used, pretrain dataset and spatial-temporal
resolution. Freeze (tick) indicates linear probe, and no freeze (cross) means finetune.
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Supervised CE loss Contrastive Loss K-positive Contrastive Loss

Figure 1: Feature spaces learned with different losses given an imbalanced dataset. The supervised cross-
entropy (CE) learns a space biased to the dominant class. The space learned by unsupervised contrastive 10ss is
balanced but less semantically discriminative. Our proposed k-positive contrastive loss learns a balanced and

discriminative feature space. The shadow area ( ) indicates the decision boundary of each class.
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Definition 3 (p-Sphere-inscribed regular simplex). Let
h,K € Nwith K < h+ 1. We say that (;,...,(x €
R™ form the vertices of a regular simplex inscribed in the
hypersphere of radius p > 0, if and only if the following
conditions hold.:

(S1) > i) G =0
(S2) ||Gil| = p fori € [K]
(S3) JdeR:d=((,¢) forl <i<j<K

Figure 3: Regular simplices inscribed in S2.




' Motivation
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Figure 1. Test data feature distribution of (a) k-positive contrastive
learning (KCL) and (b) TSC for three classes of CIFAR10 (plane,
cat, dog), for different training data imbalance ratios p. With high
imbalance ratio, class centers learned by KCL exhibit poor unifor-
mity while class centers learned by TSC are still uniformly dis-
tributed and thus TSC achieves better performance (where Acc
refers to Accuracy on test data).
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Generate Uniform Targets Class Target Assignment
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Figure 2. Illustration of TSC. It first computes the optimal targets
for the class centers on the hypersphere. Then, during training,
in each iteration, each target is assigned to the nearest class, and
a targeted contrastive learning loss 1s designed to encourage the
samples from each class to move to the assigned target position.
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unit hypersphere S9! = {u € RY . |u|| = 1}
target positions of C classes {t’f ,?:1,

d < (C- 1), computing the vertices of a regular simplex becomes very hard

C C
~, 1 T,
Lo({t:}21) = = d log Y el /T,
i=1  j=1

the minimum of Lu after gradient descent will be equal to its analytical minimum when d> (C- 1)
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® Class-Target Assignment

minimizes the distance between the target positions and the normalized class centers
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® Targeted Supervised Contrastive Loss
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F Experiments

Table 1. Top-1 accuracy (%) of ResNet-32 on long-tailed CIFAR-
10 and CIFAR-100. TSC consistently improves on past imbal-
anced learning techniques and achieves the best performance. Pre-
vious SOTA results for each imbalance ratio are colored with gray.
We report the accuracy of our re-implemented KCL () since they
do not report their performance on CIFAR in [ 5].

Dataset ‘ CIFAR-10-LT ‘ CIFAR-100-LT

Imbalance Ratio (p) | 100 | 50 | 10 | 100 | 50 | 10

CE 704 | 748 | 86.4 | 383 | 439 | 55.7
CB-CE [Y] 724 | 78.1 | 86.8 | 38.6 | 44.6 | 57.1
Focal [27] 704 | 76.7 | 86.7 | 384 | 443 | 55.8

CB-Focal [V] 746 | 793 | 87.1 | 396 | 452 | 58.0
CE-DRW [1] 75.1 | 789 | 86.4 | 40.5 | 44.7 | 56.2
CE-DRS [4] 745 | 78.6 | 863 | 404 | 445 | 56.1
LDAM [4] 734 | 76.8 | 87.0 | 39.6 | 450 | 56.9
LDAM-DRW [4] 77.0 | 809 | 88.2 | 42.0 | 46.2 | 58.7
M2m-ERM [23] 78.3 - 879 | 429 - 58.2
M2m-LDAM [23] 79.1 - 87.5 | 43.5 - 57.6
KCLT [1%] 77.6 | 81.7 | 88.0 | 428 | 463 | 57.6

TSC | 79.7 | 829 | 88.7 | 43.8 | 474 | 59.0
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Table 2. TSC outperforms previous state-of-the-art single-
model methods on ImageNet-LT. Previous SOTA results of each
class split (many, medium, few, all) are colored with gray.
Please note that the KCL accuracy for each class split re-
ported in [!%] does not match the reported accuracy on all
classes (61.8%0.385+49.4*0.479+30.9%0.136=51.658 which can-
not be rounded to 51.5), indicating that their reported results
may have a typo. Therefore, we also report the result of our re-
implemented KCL (denoted with 1), which achieves similar accu-
racy on all classes but slightly different accuracy on each split.

Methods Many Medium Few  All

OLTR [28] 35.8 32.3 21.5 322
T-norm [1Y] | 56.6 44.2 27.4 46.7
cRT [19] 58.8 44.0 26.1 47.3
LWS [19] 57.1 45.2 203 4777
FCL [ 18] 61.4 47.0 282 498
KCL [15] 61.8 49 .4 30.9 51.5
KCL 7 62.4 49.0 295 3515

TSC 63.5 49.7 304 524
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F Experiments

Table 3. TSC outperforms previous state-of-the-art single-model
methods on challenging iNaturalist 2018 [37] dataset, which con-
tains 8142 classes. Previous SOTA results for each class split
(many, medium, few, all) are colored with gray.

Methods Many Medium Few  All

CE 72.2 63.0 572 61.7
CB-Focal - - - 61.1
OLTR [25] 59.0 64.1 649 639
LDAM + DRW [4] : : - 64.6
cRT [19] 69.0 66.0 63.2 652
7-norm [ 9] 65.6 65.3 659 656
LWS [19] 65.0 66.3 65.5 659
KCL [15] : : - 68.6
TSC 72.6 70.6 67.8 69.7
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