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Memorization effect of DNNs

deep neural networks tend to first memorize and fit easy (clean) examples and then overfit hard

(noisy) examples.

To exploit the memorization effect, a core issue is to study when to stop the optimization
of the network.
Current methods usually adopt an early stopping strategy, which decides the stopping point

by considering the network as a whole.

DNNs trained By SGD, supervisory signals will gradually propagate through the whole network

from latter layers to former layers.
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Figure 1: We train a ResNet-18 model on CIFAR-10 with three types of noisy labels and evaluate the
impact of noisy labels on the representations from the 9-th layer, the 17-th layer, and the final layer.
The X-axis is the number of epochs for the first block of the network. The curves present the mean of
five runs and the best performances are indicated with dotted vertical lines.



I Method

« Objective function

min — » L(f(x::0),v;),

 Training model for a relatively small epoch number T.

« The network can be constituted with L DNN parts

------------------------------------------------------------------------------

-------------------------------------------------------------------------------



I Method

 For the first part, train T, epochs with the following objective.

111111 —ZE flx;;: 091, ..., Orn), ;).

O n

* Then keep the obtained parameter fixed: optimize the [-th DNN part with T, epochs.

---------------------------------------------------------------------------------------------------------------------------------
.

*
--------------------------------------------------------------------------------------------------------------------------------
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ICompared with traditional early stopping
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Figure 2: Performance of the traditional early stopping trick and the proposed PES on CIFAR-10
with different types of label noise. The lines present the mean of five runs.



l Learning with Confident Examples

 Select confident examples to facilitate the model training.

« To make the results more robust by generating two different augmentations.

{(mz yz)|J — Ua i=1,. }a

1 .
7; = arg max §[fk(Augment(mi);@) + fﬁ“(Augment(mi);@)],

* Train the DNN based on confident examples set with the following objective.

E—Zuy (s, f(23:9)). (6)

where w; is the corresponding class 1&-’e1ght, Assuming that o, = [{(@;. 9;)|7; = k. (x;,7;) € D}
denotes the cardinality of the confident example set belonging to the A-th class. Then, we can set

. K . . . .
w; = g.f-__f[zj‘zl ;) to indicate the corresponding class importance.



ICombining with Semi-Supervised Learning

 Training with only confident examples neglects the rest data may suffer from insufficient
training examples.

 Using semi-supervised techniques (MixMatch) by regarding the noisy examples as unlabeled data.

Dy = {(x,. E}i}|;§z‘ = ¥i,1 = 1, ..}
Dy =A{xi|1; # v:,i=1,..n}
1

Y; = arg max 3[ fk(Augmem(a:.i): Q)+ f R(Augmem[mi): O)].
ke{l,. K} =

(7)



] Algorithm

Algorithm 1: Progressive Early Stopping with Semi-Supervised Learning

Input: Neural network with trainable parameters © = {©¢, ..., O}, Noisy training dataset
{x;,v;)}"_,, Number of training epochs for different part: T1 ..... Ty, and training epmhs T.
for reﬁnmer with confident examples

fori=1,.... 17 do

B Opnmlze network parameter © with Eq. (3):

for/=2 ..., Ldo
Froze {©q,...,0;_1} and re-initialize {©;, ..., O }:
fori=1..... 17 do

| Opnmlze network parameter {©;, ..., O} with Eq. (4):

U_nfroze O:
fori=1..... 1. do

Extract confident example set D; and unlabeled set D,, with classifier f(-,©) by Eq. (7):
Training the classifier f(-, ©) with MixMatch loss on D,‘g and D,,:

Evaluate the obtained classifier f(-. ©).




) Preliminary Experiments

Table 1: Preliminary analysis of the performance and the quality of extracted confident examples on
CIFAR-10. The mean and standard deviation are computed over five runs.

Metrics Methods Sym-20% Sym-509% Pair-45% Inst-20% Inst-40%
Test Acclracy Early Stopping | 82.55+£2.46 | 70.76+1.24 | 60.62+5.59 | 84.41+0.90 | 74.734+2.65
: PES 85.87+£1.59 | 75.87+1.33 | 62.40+2.34 | 86.58+0.45 | 77.07+1.18
[ abel Precision Early Stopping | 98.814+0.15 | 94.65£0.19 | 72.534+5.26 | 98.70+£0.43 | 90.77+1.87
PES 98.961-0.09 | 95.46+0.14 | 72.9942.27 | 98.524+0.19 | 90.63+£0.92
[ abel Recall Early Stopping | 88.51+£2.26 | 75.184+1.00 | 67.84+5.06 | 90.37+1.01 | 82.15+3.17
PES 92.67+1.43 | 81.03+1.83 | 71.06+2.27 | 93.24+0.60 | 85.91+0.68
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Table 2: Comparison with state-of-the-art methods without semi-supervised learning on CIFAR-10
and CIFAR-100. The mean and standard deviation computed over five runs are presented.

o Symmeltric Pairflip Instance
Dataset | Method 20% 50% 5% 20% 30%
CE 84.00+0.66 | 75.51+1.24 | 63.34£6.03 | 85.10£0.68 | 77.00£2.17
Co-teaching | 87.16£0.11 | 72.80£0.45 | 70.11=1.16 | 86.54£0.11 | 80.98+0.39
Forward 85.63+0.52 | 77.924+0.66 | 60.15£1.97 | 85.29+0.38 | 74.724+3.24
CIFARIO | Joint Optim | 89.70£0.11 | 85.00+0.17 | 82.63+1.38 | 89.69+£0.42 | 82.62+0.57
T-revision | 89.63+0.13 | 83.40+0.65 | 77.06£6.47 | 90.46+0.13 | 85.37+3.36
DMI 88.18+0.36 | 78.284+0.48 | 57.60x14.56 | 89.14+0.36 | 84.78+1.97
CDR 89.724+0.38 | 82.64+0.89 | 73.67£0.54 | 90.41+0.34 | 83.07%£1.33
Ours 92.38+£0.40 | 87.45+0.35 | 88.43+1.08 | 92.69+0.44 | 89.73+0.51
CE 51.43£0.58 | 37.69£3.45 | 34.10£2.04 | 52.19£1.42 | 42.26£1.29
Co-teaching | 59.28+0.47 | 41.37£0.08 | 33.22+048 | 57.24£0.69 | 45.69£0.99
Forward ST.75£0.37 | 44.66£1.01 | 27.88+0.80 | 58.76£0.66 | 44.50£0.72
CIFARITO00 | Joint Optim | 64.55+0.38 | 50.22+041 | 42.61£0.61 | 65.15£0.31 | 55.57+0.41
T-revision | 65.40+1.07 | 50.24+1.45 | 41.10£1.95 | 60.71+£0.73 | 51.54+0.91
DMI 58.73£0.70 | 44.25£1.14 | 2690045 | 58.05£0.20 | 47.36=+0.68
CDR 66.52+£0.24 | 55.30£0.96 | 43.87=1.35 | 67.33£0.67 | 55.94£0.56
Ours 68.89+0.45 | 58.90+2.72 | 57.18+1.44 | 70.49+0.79 | 65.68+1.41
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Table 3: Comparison with state-of-the-art methods with semi-supervised learning on CIFAR-10 and
CIFAR-100 with symmetric label noise from different levels. Results with * are token from [15]. The
mean and standard deviation are computed over three runs.

Dataset CIFAR-10 CIFAR-100

Methods / Noise | Sym-20% | Sym-50% | Sym-80% | Sym-20% | Sym-50% | Sym-80%
CE 86.5+0.6 | 80.6£0.2 | 63.7£0.8 | 579404 | 47.3£0.2 | 22341.2
MixUp 93.2+0.3 | 88.2+0.3 | 73.3x0.3 | 69.5£0.2 | 57.1£0.6 | 34.1£0.6

M-correction* 94.0 92.0 86.8 73.9 66.1 48.2

DivideMix* 95.2 94.2 93.0 75.2 72.8 58.3
DivideMix 05.6+0.1 | 94.6+0.1 | 92.9+0.3 | 75.34£0.1 | 72.7+0.6 | 56.4+0.3
ELR+ 04.9+0.2 | 93.6+0.1 | 90.4+0.2 | 75.54£0.2 | 71.0£0.2 | 50.4+0.8
Ours (Semt) 95.9+0.1 | 95.1+0.2 | 93.1+0.2 | 77.44+0.3 | 74.3+0.6 | 61.6+0.6
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Table 4: Comparison with state-of-the-art methods with semi-supervised learning on CIFAR-10 and
CIFAR-100 with instance-dependent and pairflip label noise from different levels. The mean and
standard deviation are computed over three runs.

Dataset CIFAR-10 CIFAR-100
Methods / Noise | Inst-20% | Inst-40% | Pair-43% | Inst-20% | Inst-40% | Pair-45%
CE 87.5+0.5 | 78.94+0.7 | 749+1.7 | 56.8£04 | 48.2+0.5 | 38.5£0.6
MixUp 03.3+0.2 | 87.64+0.5 | 82.4+1.0 | 67.1+0.1 | 55.0+£0.1 | 44.2+0.5
DivideMix 05.5+0.1 | 94.5+£0.2 | 85.6%+1.7 | 75.2+0.2 | 70.9+0.1 | 48.2+1.0
ELR+ 94.940.1 | 94.340.2 | 86.1+1.2 | 75.8+0.1 | 74.3+0.3 | 65.3+1.3
Ours (Semi) 95.9+0.1 | 95.3+0.1 | 94.5+0.3 | 77.6:0.3 | 76.1+0.4 | 73.6+1.7

Table 5: Compassion with state-of-the-art methods on Clothing-1M. Results of baseline methods are
taken from the original papers. ours represent the results obtained by PES with a single network and
ours* indicate the results obtained by PES with an ensemble model.

Ours*
74.99

Ours
74.64

ELR+*
74.81

DivideMix*
74.76

T-revision
74.18

DMI
72.46

CE Forward
69.21 69.84

Joint-Optim
72.16
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Figure 3: Sensitivity analysis for different training iteration numbers: 75 and 73.
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Table 3. Benchmark datasets. Reporting accuracy for all combinations of early stopping and flooding. We compare “w/o flood™ and “‘w/
flood™ and the better one is shown in boldface. The best setup for each dataset is shown with underline. “—" means that flood level of
zero was optimal. “LR” stands for learning rate and “aug.” is an abbreviation of augmentation.

w/o early stopping

w/ early stopping

Dataset Model & Setup w/o flood w/ flood | w/oflood w/flood

MLP 08.45%  98.76% | 98.480:  98.66%

MNIST MLP w/ weight decay 08.53%  98.58% | 98.51%  98.64%

MLP w/ batch normalization 08.60%  98.72% | 98.66%  98.65%

MLP 02.27%  93.15% | 92.24%  92.90%

Kuzushiji MLP w/ weight decay 02.21%  92.53% | 92.24%  93.15%

MLP w/ batch normalization 0298%  93.80% | 92.81%  93.74%

SVHN ResNetl8 02.38%  92.78% | 92.41%  92.79%

ResNet18 w/ weight decay 93.20% — 92.99%  93.42%

CIFAR-10 ResNet44 75.389%  75.31% | 74.98%  75.52%

' ) ResNetd44 w/ data aug. & LR decay | 88.05%  89.61% | 88.06%  89.48%

Netde 16.00 9 15 830 870, q,

CIFAR-100 ResNet44 46.00 & 43,83 . 4{:.3? Vo 46.73%
ResNetd4 w/ data aug. & LR decay | 63.38%  63.70% | 63.24% -
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