

An Unbiased Risk Estimator for Learning with Augmented Classes

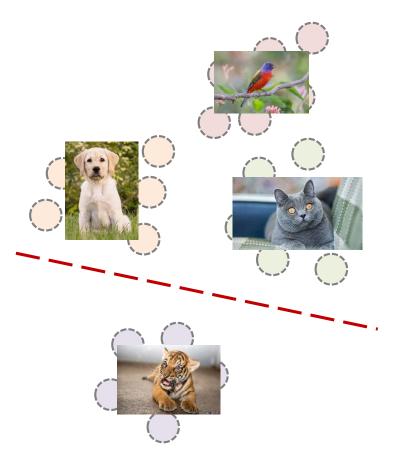
Yu-Jie Zhang, Peng Zhao, Lanjihong Ma, Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China {zhangyj, zhaop, maljh, zhouzh}@lamda.nju.edu.cn

NeurIPS 2020

Introduction

Open-set problem



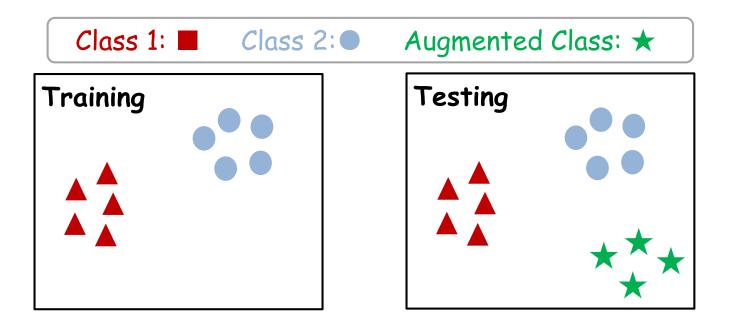
- □ The real world is 'open'.
- Open-set issue: models always

misclassifies unseen class into one of seen class, which makes its predictions unreliable.

Goal: making the learning system robust
 to identify unseen classes in the non stationary environments.

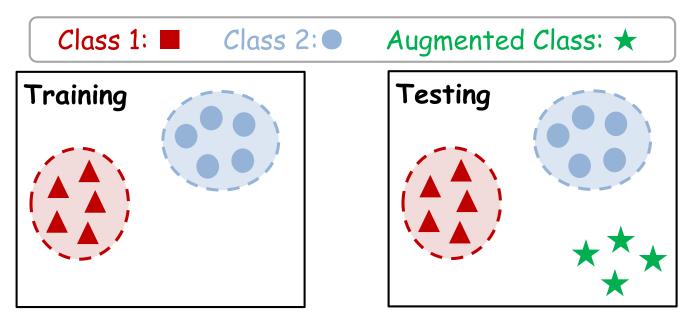
Learning with Augmented Classes

• LAC problem: augmented classes unobserved in training data might emerge in testing



Previous Attempts

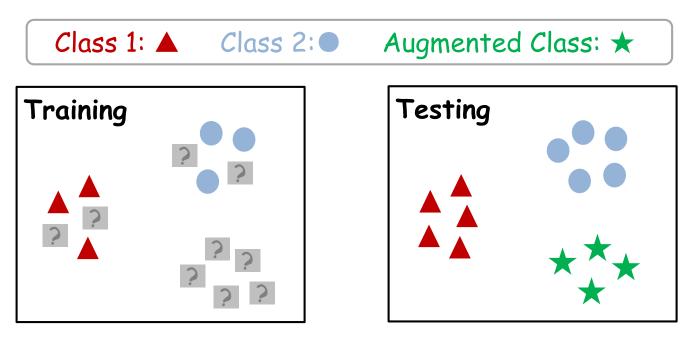
• LAC problem: augmented classes unobserved in training data might emerge in testing



- Potential Limitation:
 - Existing methods hardly explore the generalization ability of the model.

Exploiting Unlabeled data for LAC

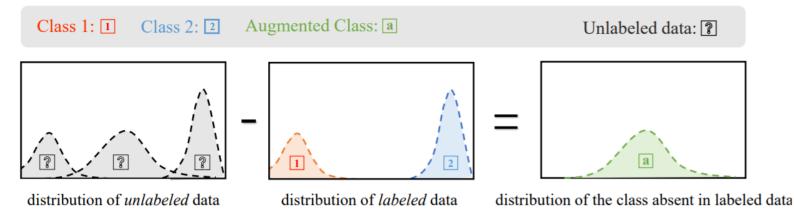
• LAC problem: augmented classes unobserved in training data might emerge in testing



- Solution in this paper:
 - Propose an approach with theoretical guarantee by exploiting unlabeled data.

Exploiting Unlabeled data for LAC

• Intuition: the distribution of augmented class can be approximated by separating the distribution of known class from that of unlabeled data.



Class shift condition

Definition 1 (Class Shift Condition). The testing distribution P_{te} , the distribution of known classes P_{kc} and the distribution of augmented classes P_{ac} are under the *class shift condition*, if

$$P_{te} = \theta \cdot P_{kc} + (1 - \theta) \cdot P_{ac}, \tag{1}$$

where $\theta \in [0, 1]$ is a certain mixture proportion.¹

Relation to PU Learning

- PU learning: learning from **positive** and **unlabeled** examples
 - One-sample assumption: both P and U data is drawn from the identical distribution p(x).
 - **Two-sample assumption**: P data is drawn from the positive marginal density p(x|Y = +1) and U data is drawn from p(x).

$$P_X = \pi P_1 + (1 - \pi) P_{-1}.$$

$$P_{te} = \theta \cdot P_{kc} + (1 - \theta) \cdot P_{ac}.$$

$$\pi = p(Y = +1)$$

• Ordinary classification risk (P and N data is both accesible)

$$R(f) := \pi R_1(f) + (1 - \pi)R_{-1}(f) \qquad R_1(f) = P_1(f(X) \neq 1),$$

treat all unlabeled data as negative,

• Everything is 'known'.

and then sub the loss of positive data.

EULAC

Definition 1 (Class Shift Condition). The testing distribution P_{te} , the distribution of known classes P_{kc} and the distribution of augmented classes P_{ac} are under the *class shift condition*, if

$$P_{te} = \theta \cdot P_{kc} + (1 - \theta) \cdot P_{ac}, \tag{1}$$

where $\theta \in [0, 1]$ is a certain mixture proportion.¹

• Class shift condition can re-written as

$$p_{XY}^{te}(\mathbf{x}, y) \stackrel{(1)}{=} \theta \cdot p_{XY}^{\mathsf{kc}}(\mathbf{x}, y) + (1 - \theta) \cdot p_{XY}^{\mathsf{ac}}(\mathbf{x}, y)$$
$$= \theta \cdot p_{XY}^{\mathsf{kc}}(\mathbf{x}, y) + \mathbb{1}(y = \mathsf{ac}) \cdot (1 - \theta) \cdot p_X^{\mathsf{ac}}(\mathbf{x}),$$

• Then, we have

$$R_{\psi}(\boldsymbol{f}) = \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y}) \sim P_{te}}[\psi(\boldsymbol{f}(\boldsymbol{x}),\boldsymbol{y})]$$

Classification risk over testing distribution

$$R_{LAC} = \theta \mathbb{E}_{(x,y) \sim P_{kc}} [\psi(f(x), y)] + \mathbb{I}(y = ac)(1 - \theta) \mathbb{E}_{x \sim P_{ac}} [\psi(f(x), ac)]$$

risk on augmented classes

EULAC

Definition 1 (Class Shift Condition). The testing distribution P_{te} , the distribution of known classes P_{kc} and the distribution of augmented classes P_{ac} are under the *class shift condition*, if

$$P_{te} = \theta \cdot P_{kc} + (1 - \theta) \cdot P_{ac}, \tag{1}$$

where $\theta \in [0, 1]$ is a certain mixture proportion.¹

• The unbiased estimator can be written as

$$R_{LAC} = \theta \mathbb{E}_{(x,y) \sim P_{kc}} [\psi(\boldsymbol{f}(\boldsymbol{x}), y)] + \mathbb{I}(y = ac) (1 - \theta) \mathbb{E}_{x \sim P_{ac}} [\psi(\boldsymbol{f}(\boldsymbol{x}), ac)]$$

$$(1-\theta) \cdot p_X^{\mathsf{ac}}(\mathbf{x}) = p_X^{te}(\mathbf{x}) - \theta \cdot p_X^{\mathsf{kc}}(\mathbf{x}).$$

$$R_{LAC} = \frac{\theta \mathbb{E}_{(x,y) \sim P_{kc}} [\psi(f(x), y)]}{|abeled \ training \ data} + \mathbb{E}_{x \sim p_x^{te}(x)} [\psi(f(x), ac)]$$

Experiments: Comparison Results

- Performance of classifying known classes and identifying augmented classes
 - Comparison on RKHS-based EULAC

 Fable 1: Macro-F1 scores on benchmark datasets. The best method is emphasized in bold. Besides,

 ndicates that EULAC is significantly better than others (paired t-tests at 5% significance level).

Dataset	OVR-SVM	W-SVM	OSNN	EVM	LACU-SVM	PAC-iForest	EULAC
usps	75.42 ± 4.87 •	79.77 ± 4.97 •	63.14 ± 8.91 •	61.14 ± 6.27 •	69.20 ± 8.34 •	55.69 ± 13.3 •	$\textbf{86.52} \pm \textbf{2.72}$
segment	71.78 ± 5.12 •	$80.82 \pm 9.38 \bullet$	85.10 ± 5.98	82.13 ± 5.88 •	$40.69 \pm 12.5 \bullet$	63.64 ± 13.1 •	$\textbf{86.17} \pm \textbf{5.80}$
satimage	54.67 ± 9.80 •	76.29 ± 13.2 •	$62.48 \pm 11.2 \bullet$	$72.10\pm8.16\bullet$	51.56 ± 17.3 •	60.76 ± 7.79 •	$\textbf{81.25} \pm \textbf{6.18}$
optdigits	$80.11 \pm 3.80 \bullet$	87.82 ± 4.64 •	$86.97 \pm 3.79 \bullet$	$72.00 \pm 8.33 \bullet$	$80.92 \pm 3.68 \bullet$	71.65 ± 5.46 •	$\textbf{91.54} \pm \textbf{2.95}$
pendigits	$72.78 \pm 5.19 \bullet$	87.79 ± 3.95	$86.69 \pm 3.39 \bullet$	$\textbf{89.94} \pm \textbf{1.30}$	$70.66 \pm 6.18 \bullet$	73.21 ± 4.52 •	88.41 ± 4.81
SenseVeh	$48.07 \pm 3.80 \bullet$	$45.96 \pm 2.32 \bullet$	$49.91 \pm 6.88 \bullet$	$51.24 \pm 3.91 \bullet$	51.61 ± 3.31 •	54.12 ± 7.19 •	$\textbf{77.33} \pm \textbf{2.17}$
landset	60.43 ± 7.65 •	68.91 ± 17.0 •	$73.25 \pm 9.23 \bullet$	76.00 ± 7.79 •	53.59 ± 9.88 •	70.50 ± 7.16 •	$\textbf{85.70} \pm \textbf{4.46}$
mnist	66.74 ± 2.76 •	75.38 ± 4.62 •	57.75 ± 10.9 •	$58.39 \pm 5.94 \bullet$	63.53 ± 7.58 •	48.31 ± 9.62 •	$\textbf{80.66} \pm \textbf{5.38}$
shuttle	$37.39 \pm 14.1 \bullet$	$58.48 \pm 34.5 \bullet$	$48.21 \pm 16.4 \bullet$	-	$34.18\pm13.4\bullet$	$29.36\pm8.70\bullet$	$\textbf{66.49} \pm \textbf{17.9}$
EULAC w/t/l	9/ 0/ 0	8/ 1/ 0	8/ 1/ 0	8/1/0	9/ 0/ 0	9/ 0/ 0	rank first 8/9

Experiments: Comparison Results

- Performance of classifying known classes and identifying augmented classes
 - Comparison on deep models

Table 2: AUC for DNN-based EULAC							
Methods	mnist	Cifar-10	SVHN				
SoftMax	97.8 ± 0.6	67.7 ± 3.8	88.6 ± 1.4				
OpenMax	98.1 ± 0.5	69.5 ± 4.4	89.4 ± 1.3				
G-OpenMax	98.4 ± 0.5	67.5 ± 4.4	89.6 ± 1.7				
OSRCI	$\textbf{98.8} \pm \textbf{0.4}$	69.9 ± 3.8	$\textbf{91.0} \pm \textbf{1.0}$				
EULAC	98.6 ± 0.4	$\textbf{85.2} \pm \textbf{2.0}$	$\textbf{91.2} \pm \textbf{2.8}$				

Study on the Size of Unlabeled Data

- Performance of classifying known classes and identifying augmented classes
 - Influence on the size of unlabeled data

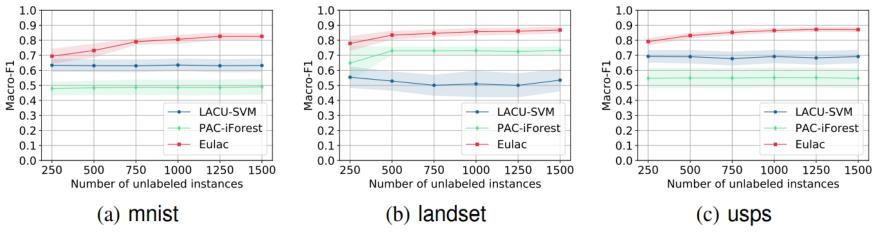
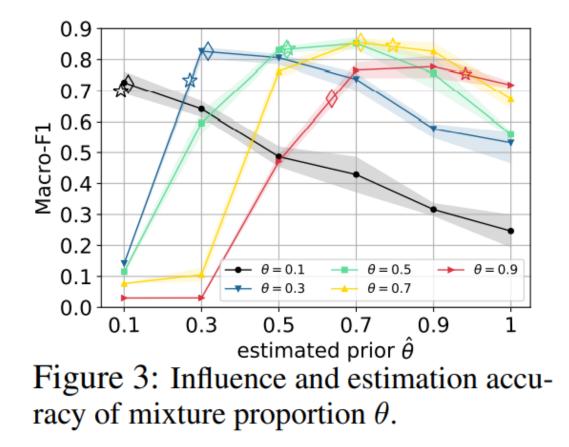


Figure 2: Macro-F1 score comparisons when the number of unlabeled data increases.

Experiments: Influence of Mixture Proportion

• Accuracy of estimating mixture prior θ and its influence on EULAC



ΤΗΑΝΚS