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I Introduction
« Open-set problem

O The real world is ‘open'’.

O Open-set issue: models always
misclassifies unseen class into one of
seen class, which makes its predictions
unreliable.

O Goal: making the learning system robust
to identify unseen classes in the non-

stationary environments.




ILear'ning with Augmented Classes

LAC problem: augmented classes unobserved in training data might
emerge in testing
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I Previous Attempts

« LAC problem: augmented classes unobserved in training data might
emerge in testing
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* Potential Limitation:

Existing methods hardly explore the generalization ability of the
model.
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I Exploiting Unlabeled data for LAC

« LAC problem: augmented classes unobserved in training data might
emerge in testing
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* Solution in this paper:
Propose an approach with theoretical guarantee by exploiting
unlabeled data.
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I Exploiting Unlabeled data for LAC

 Intuition: the distribution of can be approximated
by separating the distribution of known class from that of
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distribution of unlabeled data distribution of labeled data distribution of the class absent in labeled data

* Class shift condition

Definition 1 (Class Shift Condition). The testing distribution ., the distribution of known classes
Py and the distribution of augmented classes P are under the class shift condition, if

Pteze'Pkc+(1_0)'Pac. (l)

where 6 € [0, 1] is a certain mixture proportion.’
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I Relation to PU Learning

* PU learning: learning from positive and unlabeled examples

> One-sample assumption: both P and U data is drawn from the
identical distribution p(x).

- Two-sample assumption: P data is drawn from the positive
marginal density p(x|Y = +1) and U data is drawn from p(x).

/’

Py — 7P, + | &) Pi=0-Be+(1-0)- Py
=p(Y = +1)

> Ordinary classification risk (P and N data is both accesible)

R(f) =mRi(f) + (1 —m)R_1(f) Ri(f) = P(f(X)#1)

treat all unlabeled data as negative,

> Everything is '‘known’.  and then sub the loss of positive data.
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| EuLAC

Definition 1 (Class Shift Condition). The testing distribution P, the distribution of known classes
Py and the distribution of augmented classes P;¢ are under the class shift condition, if

Pie=0-Bc+(1-0) - Py, (1)

where 0 € [0, 1] is a certain mixture proportion.’

Class shift condition can re-written as

—_—
—

L0 DSy (x,y) + (1—0) - p2y (%, 0)

0-pSy(x,y) +1(y =ac) - (1 - 0) - p¥(x),

Py (x,y)

Then, we have
Ry (f) = Exyy~p, [W(f(x), ¥)]

Classification risk over testing distribution

4

Riac = OE(xy)~py, [W(f(x), )] +1(y = ac)(1 — O)Ex-p,, [Y(f(x),ac)]

risk on known classes risk on
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| EULAC

Definition 1 (Class Shift Condition). The testing distribution P, the distribution of known classes
Py and the distribution of augmented classes Pj¢ are under the class shift condition, if

PteZO'PkC_*-(l_e)'PaCﬂ (l)

where 6 € [0, 1] is a certain mixture proportion.’

e The unbiased estimator can be written as

Riac = OF(xy)mp [WF ), 0] + 1y = ac)(1 — O)Eyep, [Y(f (%), ac)]

@ (1—6) - p¥(x) = pi(x) — 0 - P (x).

Riac = 6’Hz(x,y)wkC [ (f(x),y)] + Ex~p§e(x) [Y(f(x),ac)]
labeled training data

—




I Experiments: Comparison Results

« Performance of classifying known classes and identifying
augmented classes

o Comparison on RKHS-based EULAC

[able 1: Macro-F1 scores on benchmark datasets. The best method is emphasized in bold. Besides, «
ndicates that EULAC is significantly better than others (paired t-tests at 5% significance level).

Dataset OVR-SVM W-SVM OSNN EVM LACU-SVM PAC-iForest EuLAC

usps 7542+ 487e 7977 £497e 63.14+:891e 61.14£627e 69.20+:834e 5569+ 13.3e] 86.52+2.72
segment 71.78 £5.12e¢ 80.82 £938e¢ 85.10 £5.98 82.13 :588e¢ 40.69 L+ 125e 63.64+13.1¢] 86.17 = 5.80
satimage 54.67+980e 7629+ 132e 6248+ 11.2e¢ 7210+8.160 51.56+173e 60.76+7.79 ¢f 81.25 + 6.18
optdigits 80.11 £380e 87.82+464e 8697379 7200£833e 8092+3.68e 71.65+546e] 91.54 +2.95
pendigits 7278 £5.19¢ 87.79 £3.95 86.69 =339e¢ 89.94 + 1.30 70.66 = 6.18 e 7321 =452 ] 88.41 £ 4381
SenseVeh 48.07 =380e 4596 +232e 4991 £688e 51.24+391e 51.61+33le 54.12+7.19e¢] 77.33 £2.17
landset 6043 =765e¢ 6891 £17.0e 7325+923e 7600779 5359+988e 7050+ 7.16e] 85.70 + 4.46
mnist 66.74 =276 7538 +462e 5775+109e 5839+594e 6353+758e 4831 +9.62e] 80.66 + 5.38
shuttle 3739 £ 14.1 e 5848 £345e 4821 £ 164 - 3418+ 134e 2936+8.70e] 66.49 +17.9
EuLAc w/ t/1] 9/0/0 8/1/0 8/1/0 8/1/0 9/0/0 9/0/0 rank first 8/ 9




I Experiments: Comparison Results

« Performance of classifying known classes and identifying
augmented classes

o Comparison on deep models

Table 2: AUC for DNN-based EULAC

Methods mnist Cifar-10 SVHN

SoftMax 97.8+06 67.7+38 8386+t14
OpenMax 98.1 05 695+44 894+13
G-OpenMax 984 +05 675+44 89.6+1.7
OSRCI 988 04 699+38 91.0+1.0
EULAC 086 +04 852+20 91.2+28




I Study on the Size of Unlabeled Data
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Figure 2: Macro-F1 score comparisons when the number of unlabeled data increases.



I Experiments: Influence of Mixture Proportion

« Accuracy of estimating mixture prior 6 and its influence on EULAC
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Figure 3: Influence and estimation accu-

racy of mixture proportion 6.
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