SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images

Daifeng Peng , Lorenzo Bruzzone , Fellow, IEEE, Yongjun Zhang , Member, IEEE, Haiyan Guan , Senior Member, IEEE, Haiyong Ding, and Xu Huang

Outline

Contribution

- A novel end-to-end SemiCDNet is proposed for the semisupervised CD task. To improve segmentation performance, a light-weighted attention module is embedded into the UNet++ network.
- A challenging data set is constructed by employing VHR satellite images, which will be released publicly for the benefit of promoting RS CD research using DL techniques.
- Experiments
- Ablation Study

SemiCDNet Architecture

Segmentation Network

Discriminator Network

 $\mathcal{D}_{\mathcal{L}} = \{ (x_i^l, y_i^l) \}_{i=1}^M$ $\ddagger \mathcal{D}_{\mathcal{U}} = \{ (x_i^{\bar{u}}) \}_{i=1}^N$

$$\min_{\theta_F} \left\{ \frac{1}{M} \sum_{i=1}^M \mathcal{L}_{\text{seg}}(x_i^l, y_i^l) + \frac{1}{N} \sum_{i=1}^N \mathcal{L}_{\text{semi}}(x_i^u) \right\}$$

$$\mathcal{L}_{D_e} = \frac{1}{M} \sum_{x^l, y^l \in \mathcal{D}_{\mathcal{L}}} \mathcal{L}_D(E(x^l) \oplus x^l, 1) + \frac{1}{N} \sum_{x^u \in \mathcal{D}_{\mathcal{U}}} \mathcal{L}_D(E(x^u) \oplus x^u, 0).$$

$$\mathcal{L}_{adv}^{D_e} = \frac{1}{N} \sum_{x^u \in \mathcal{D}_{\mathcal{U}}} \mathcal{L}_D(E(x^u) \oplus x^u, 1).$$

Experiment WHU Building Data Set

Experiment Google data set

Experiment WHU Building Data Set

(a) Image T1. (b) Image T2. (c) Reference change map. (d) FC-EF-Res. (e) FCN-PP. (f) UNet++_att. (g) AdvNet. (h) CycleGAN. (i) s4GAN. (j) Proposed SemiCDNet.

Experiment Google data set

Experiment

	Labeled Ratio											
Method 5%			10%			20%			50%			
	F1	OA	Kappa	F1	OA	Kappa	F1	OA	Kappa	F1	OA	Kappa
FC-EF-Res	0.7715	0.9116	0.7177	0.8145	0.9328	0.7737	0.8451	0.9467	0.8129	0.8561	0.9513	0.8268
FCN-PP	0.7694	0.9212	0.7219	0.8110	0.9351	0.7719	0.8475	0.9512	0.8186	0.8539	0.9504	0.8240
UNet++_att	0.7749	0.9297	0.7308	0.8265	0.9448	0.7938	0.8499	0.9502	0.8200	0.8673	0.9577	0.8458
AdvNet	0.7599	0.9238	0.7149	0.8159	0.9404	0.7839	0.8400	0.9483	0.8093	0.8760	0.9584	0.8510
CycleGAN	0.7255	0.9191	0.6794	0.7807	0.9315	0.7405	0.8017	0.9338	0.7620	0.8330	0.9450	0.8000
s4GAN	0.8174	0.9425	0.7836	0.8493	0.9501	0.8194	0.8557	0.9523	0.8272	0.8772	0.9593	0.8528
SemiCDNet	0.8290	0.9434	0.7962	0.8528	0.9517	0.8240	0.8657	0.9559	0.8403	0.8774	0.9595	0.8538

	Labeled Ratio											
Method	10%			20%			40%			60%		
	F1	OA	Kappa	F1	OA	Kappa	F1	OA	Kappa	F1	OA	Kappa
FC-EF-Res	0.7381	0.8460	0.6261	0.7810	0.8710	0.6822	0.7870	0.8613	0.6781	0.8098	0.8747	0.7078
FCN-PP	0.7295	0.8385	0.6144	0.7977	0.8743	0.7001	0.8014	0.8745	0.7029	0.8163	0.8860	0.7253
UNet++_att	0.7441	0.8550	0.6415	0.7978	0.8796	0.7045	0.8167	0.8868	0.7258	0.8281	0.8898	0.7384
AdvNet	0.7173	0.8273	0.5939	0.7882	0.8657	0.6834	0.8034	0.8742	0.7022	0.8267	0.8795	0.7258
CycleGAN	0.7145	0.8483	0.6131	0.7641	0.8545	0.6562	0.7780	0.8625	0.6740	0.7923	0.8656	0.6877
s4GAN	0.7397	0.8369	0.6214	0.8070	0.8829	0.7152	0.8224	0.8895	0.7320	0.8351	0.8935	0.7466
SemiCDNet	0.7627	0.8621	0.6610	0.8102	0.8864	0.7207	0.8243	0.8905	0.7346	0.8389	0.8964	0.7525

F1-score (F1) overall accuracy (OA) Kappa coefficient (Kappa)

Ablation Study

Method	WHU Building Dataset	Google Dataset
w/o $D_s D_e$	0.8265	0.7978
w/o D_s	0.8490	0.8061
w/o D_e	0.8456	0.8003
Proposed	0.8528	0.8102