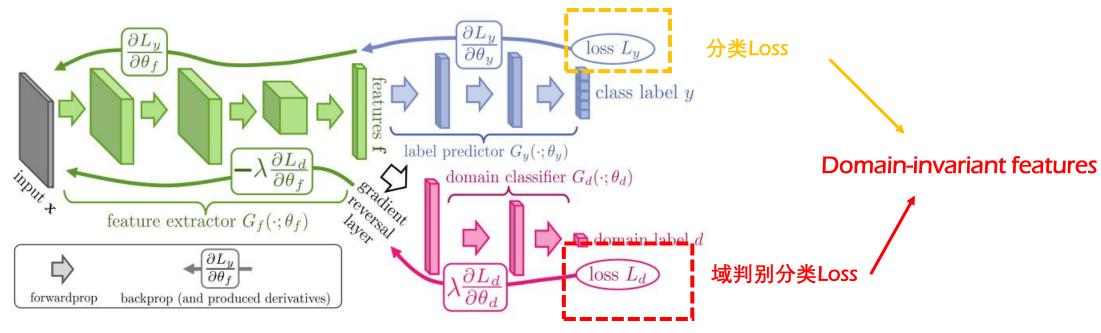


Asymmetric Tri-training for Unsupervised Domain Adaptation

Kuniaki Saito ¹ Yoshitaka Ushiku ¹ Tatsuya Harada ¹²

Background — Domain-Adversarial Training of Neural Networks

DANN aimed at obtaining domain-invariant features by minimizing the divergence between domains, as well as a category loss on the source domain.



Domain-Adversarial Training of Neural Networks[1]

$$\epsilon_{T}(h) \leq \epsilon_{S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{S}, \mathcal{D}_{T}) + \lambda$$

$$h* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \epsilon_{S}(h) + \epsilon_{T}(h)$$

$$\lambda = \epsilon_{S}(h^{*}) + \epsilon_{T}(h^{*})$$

Motivation

DANN aims to learn domain-invariantly discriminative representations.

Two View

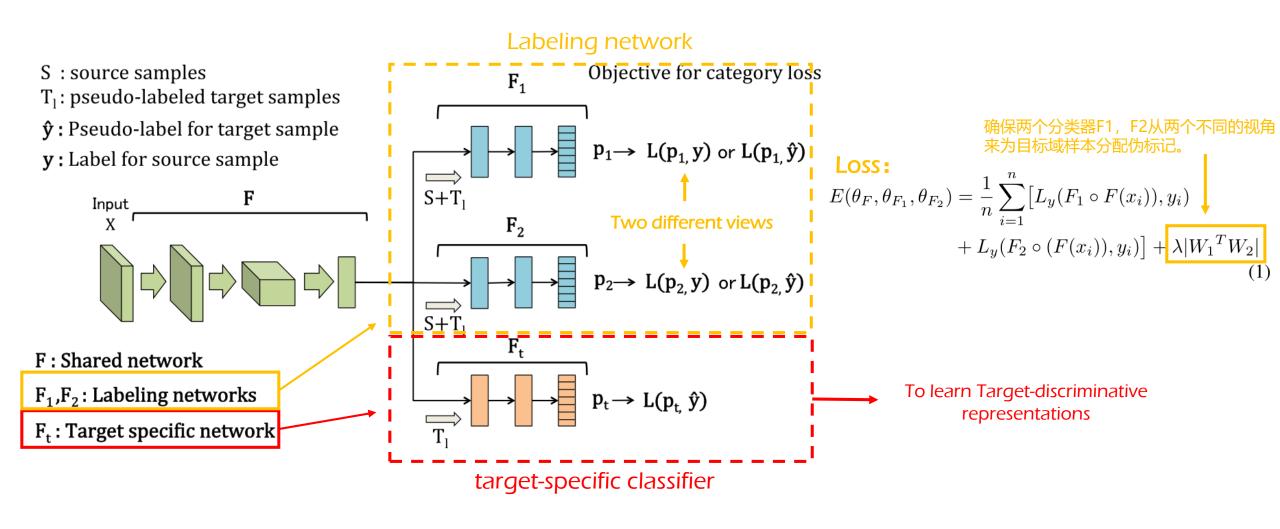
- ➤ However, if a classifier that works well on both the source and the target domains does not exist, we theoretically cannot expect a discriminative classifier to be applicable to the target domain.
- ➤ This methods aims to learn target-discriminative representations for target domain by assigning pseudo-label to the target samples and training the target-specific networks as if they were true labels.

Classifier 1 Classifier 2 Class A Class A Class A Classifier 2 Classifier 3 Classifier 2 Classifier 3 Classifier 3 Classifier 3 Classifier 3 Classifier 4 Classifier 3 Classifier 4 Classifier 3 Classifier 4 Classifier 4 Classifier 4 Classifier 4 Cla

Figure 1. Outline of our model. We assign pseudo-labels to unlabeled target samples based on the predictions from two classifiers trained on the source samples.

Method — Asymmetric Tri-training

Asymmetric means that every classifiers has been assigned different roles.



Method — Algorithm

Algorithm 1 iter denotes the iteration of the training. The function Labeling indicates the labeling method. We assign pseudo-labels to samples when the predictions of F_1 and F_2 agree, and at least one of them is confident of their predictions.

```
Input: data \mathbf{X^s} = \left\{ (x_i, t_i) \right\}_{i=1}^m, \mathbf{X^t} = \left\{ (x_j) \right\}_{j=1}^n \mathbf{X^t}_l = \emptyset for j = 1 to iter do
```

Train F, F_1, F_2, F_t with a mini-batch from the training set \mathcal{S}

end for

$$N_t = N_{init} #5000$$

 $\mathbf{X^t}_l = \text{Labeling}(F, F_1, F_2, \mathbf{X^t}, N_t)$
 $\mathcal{L} = \mathbf{X^s} \cup \mathbf{X^t}_l$

for K steps do

for
$$j = 1$$
 to $iter$ do

Train F, F_1, F_2 with mini-batch from training set \mathcal{L} Train F, F_t with mini-batch from training set $\mathbf{X^t}_l$

end for
$$\mathbf{X^t}_l = \emptyset, N_t = K/20*n$$

$$\mathbf{X^t}_l = \text{Labeling}(F, F_1, F_2, \mathbf{X^t}, N_t)$$

$$\mathcal{L} = \mathbf{X^s} \cup \mathbf{X^t}_l$$
 end for

Labeling() 为目标域数据加入伪标记

Two conditions:

1.两个分类器给出相同的分类标记(两个视图). 2.分类置信度 > 0.9 or 0.95

N_t: pseudo-labeled candidates

Experiments

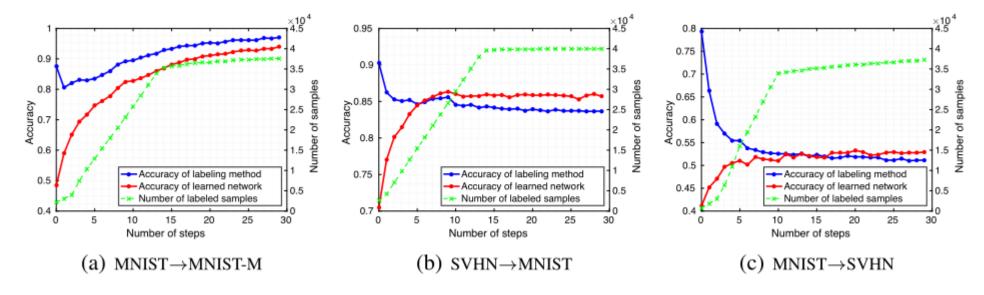
	OURCE	MNIST	SVHN	MNIST	SYN DIGITS	SYN SIGNS
METHOD	ARGET	MNIST-M	MNIST	SVHN	SVHN	GTSRB
Source Only w/o BN		59.1(56.6)	68.1(59.2)	37.2(30.5)	84.1(86.7)	79.2(79.0)
Source Only with BN		57.1	70.1	34.9	85.5	75.7
MMD (Long et al., 2015b)		76.9	71.1	-	88.0	91.1
DANN (Ganin & Lempitsky	, 2014)	81.5	71.1	35.7	90.3	88.7
DRCN (Ghifary et al., 2016)		-	82.0	40.1	-	-
DSN (Bousmalis et al., 2016)	83.2	82.7	-	91.2	93.1
kNN-Ad (Sener et al., 2016)		86.7	78.8	40.3	-	-
Ours w/o BN		85.3	79.8	39.8	93.1	96.2
Ours w/o weight constraint ($\lambda = 0$)		94.2	86.0	49.7	92.4	94.0
Ours		94.0	85.8	52.8	92.9	96.2

Table 1. Results of the visual domain adaptation experiment on digit and traffic sign datasets. In every setting, our method outperforms other methods by a large margin. In the source-only results, we show the results reported in (Bousmalis et al., 2016) and (Ghifary et al., 2016) in parentheses.

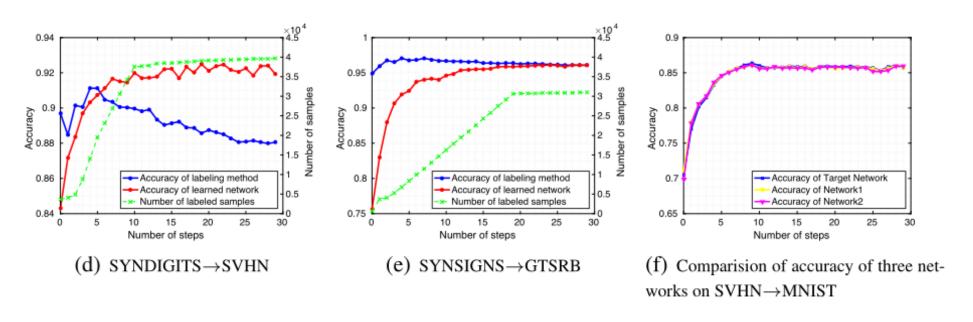
Source→Target	VFAE	DANN	Our method
books→dvd	79.9	78.4	80.7
books→electronics	79.2	73.3	79.8
books→kitchen	81.6	77.9	82.5
dvd→books	75.5	72.3	73.2
dvd→electronics	78.6	75.4	77.0
dvd→kitchen	82.2	78.3	82.5
electronics→books	72.7	71.1	73.2
electronics→dvd	76.5	73.8	72.9
electronics→kitchen	85.0	85.4	86.9
kitchen→books	72.0	70.9	72.5
kitchen→dvd	73.3	74.0	74.9
kitchen→electronics	83.8	84.3	84.6

Table 3. Amazon Reviews experimental results. The accuracy (%) of the proposed method is shown with the result of VFAE (Louizos et al., 2015) and DANN (Ganin et al., 2016).

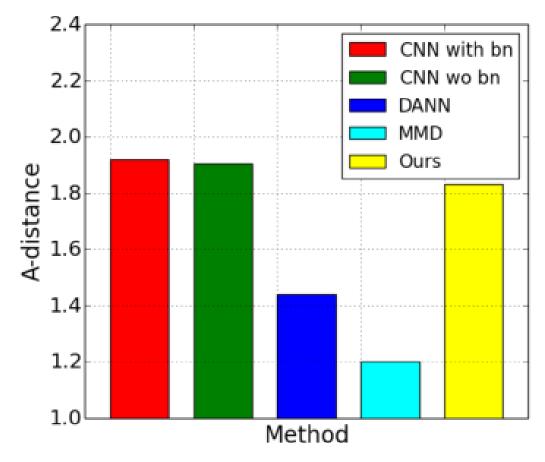
Experiments



Labeling accuracy: (the number of correctly labeled samples)/(the number of labeled samples)



Experiments



(g)
$$\mathcal{A}$$
-distance in MNIST \rightarrow MNIST-M

$$\hat{d}_{\mathcal{A}} = 2(1 - 2\epsilon)$$

 ϵ is a generalization error

Thanks