

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning

Zhenda Xie*13, Yutong Lin*23, Zheng Zhang3, Yue Cao3, Stephen Lin3, Han Hu³

1Tsinghua University 2Xi'an Jiaotong University

3Microsoft Research Asia

xzd18@mails.tsinghua.edu.cn yutonglin@stu.xjtu.edu.cn
{zhez,yuecao,stevelin,hanhu}@microsoft.com

CVPR 2021

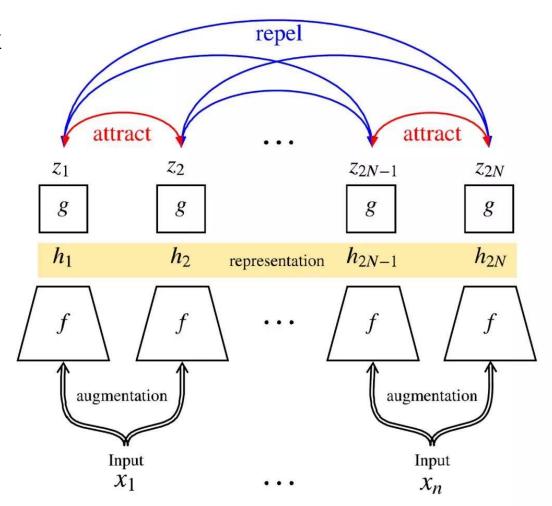
Motivation

- ➤ Most existing self-supervised learning methods are trained only on instance-level pretext tasks, leading to representations that may be suboptimal for downstream task requiring dense pixel predictions.
- > How to perform self-supervised representation learning at the pixel level is a problem that until now has been relatively unexplored.

Background

- ➤ The SimCLR contrastive Learning Framework
- A stochastic data **augmentation** module
- A neural network base encoder f(.)
- A small neural network projection head g(.)
- A contrastive loss function L
- > Loss function for a positive pair of examples(i,j)

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$



Method

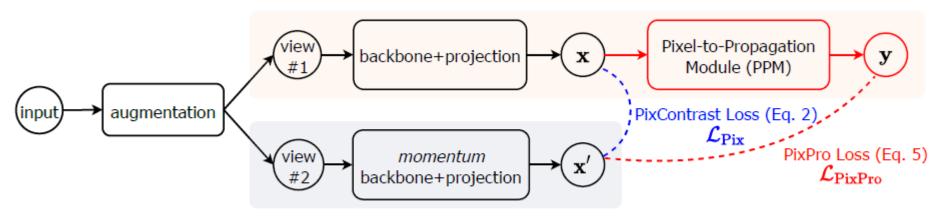


Figure 2. Architecture of the *PixContrast* and *PixPro* methods.

■ Pixel Contrast

$$A(i,j) = \begin{cases} 1, & \text{if } \operatorname{dist}(i,j) \leq \mathcal{T}, \\ 0, & \text{if } \operatorname{dist}(i,j) > \mathcal{T}, \end{cases}$$

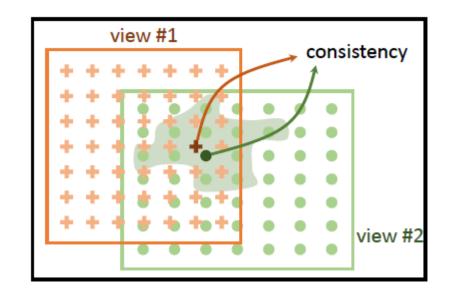
■ PixContrast Loss

$$\mathcal{L}_{\text{Pix}}(i) = -\log \frac{\sum\limits_{j \in \Omega_p^i} e^{\cos\left(\mathbf{x}_i, \mathbf{x}_j'\right)/\tau}}{\sum\limits_{j \in \Omega_p^i} e^{\cos\left(\mathbf{x}_i, \mathbf{x}_j'\right)/\tau} + \sum\limits_{k \in \Omega_n^i} e^{\cos\left(\mathbf{x}_i, \mathbf{x}_k'\right)/\tau}},$$

- i, j: pixels form each of two views
- x_i , x_i' : pixel feature vectors in two views

 Ω_p^i , Ω_p^i : sets of pixels in the second view assigned as positive and negative with respect to pixel i

PixPro



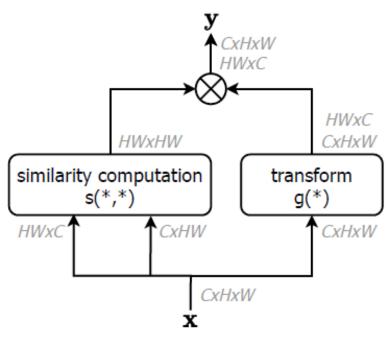


Figure 3. Illustration of the pixel propagation module (*PPM*). The input and output resolutions of each computation block are included.

□ Pixel Propagation Module(PPM)

$$\mathbf{y}_i = \sum_{j \in \Omega} s(\mathbf{x}_i, \mathbf{x}_j) \cdot g(\mathbf{x}_j)$$
, where $s(\mathbf{x}_i, \mathbf{x}_j) = (\max(\cos(\mathbf{x}_i, \mathbf{x}_j), 0))^{\gamma}$

PixPro

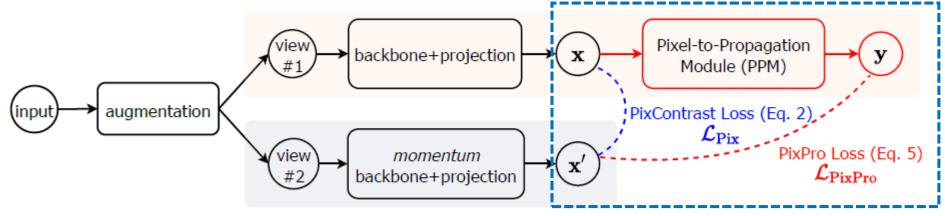


Figure 2. Architecture of the PixContrast and PixPro methods.

□ PixPro Loss

$$\mathcal{L}_{PixPro} = -\cos(\mathbf{y}_i, \mathbf{x}'_j) - \cos(\mathbf{y}_j, \mathbf{x}'_i),$$

It encourages consistency between positive pairs without consideration of negative pairs.

Experiment

Method	#. Epoch	Pascal VOC (R50-C4)		COCO (R50-FPN)			COCO (R50-C4)			Cityscapes (R50)	
		AP	AP_{50}	AP_{75}	mAP	AP_{50}	AP_{75}	mAP	AP_{50}	AP_{75}	mIoU
scratch	-	33.8	60.2	33.1	32.8	51.0	35.3	26.4	44.0	27.8	65.3
supervised	100	53.5	81.3	58.8	39.7	59.5	43.3	38.2	58.2	41.2	74.6
MoCo [19]	200	55.9	81.5	62.6	39.4	59.1	43.0	38.5	58.3	41.6	75.3
SimCLR [9]	1000	56.3	81.9	62.5	39.8	59.5	43.6	38.4	58.3	41.6	75.8
MoCo v2 [10]	800	57.6	82.7	64.4	40.4	60.1	44.3	39.5	59.0	42.6	76.2
InfoMin [35]	200	57.6	82.7	64.6	40.6	60.6	44.6	39.0	58.5	42.0	75.6
InfoMin [35]	800	57.5	82.5	64.0	40.4	60.4	44.3	38.8	58.2	41.7	75.6
PixPro (ours)	100	58.8	83.0	66.5	41.3	61.3	45.4	40.0	59.3	43.4	76.8
PixPro (ours)	400	60.2	83.8	67.7	41.4	61.6	45.4	40.5	59.8	44.0	77.2

Table 1. Comparing the proposed pixel-level pre-training method, PixPro, to previous supervised/unsupervised pre-training methods. For Pascal VOC object detection, a Faster R-CNN (R50-C4) detector is adopted for all methods. For COCO object detection, a Mask R-CNN detector (R50-FPN and R50-C4) with $1 \times$ setting is adopted for all methods. For Cityscapes semantic segmentation, an FCN method (R50) is used. Only a pixel-level pretext task is involved in PixPro pre-training. For Pascal VOC (R50-C4), COCO (R50-C4) and Cityscapes (R50), a regular backbone network of R50 with output feature map of C5 is adopted for PixPro pre-training. For COCO (R50-FPN), an FPN network with P_3 - P_6 feature maps is used. Note that InfoMin [35] reports results for only its 200 epoch model, so we reproduce it with longer training lengths, where saturation is observed.

Experiment

method	PPM	τ	Pa	COCO		
method			AP	AP ₅₀	AP ₇₅	mAP
PixContrast		0.1	54.7	79.9	61.2	38.0
		0.2	57.1	81.7	63.3	38.6
		0.3	58.1	82.4	64.5	38.8
FixComrasi	✓	0.1	52.7	78.8	57.6	37.4
	✓	0.2	53.0	79.1	58.1	37.3
	✓	0.3	52.9	78.8	58.3	37.5
PixPro		-	58.0	82.6	65.6	39.7
Ι ΙΑΙ ΤΟ	✓	-	58.8	83.0	66.5	40.8

Table 3. Comparison of the *PixContrast* and *PixPro* methods. 100 epoch pre-training is adopted for all experiments.

Experiment

PixPro	SimCLR*	VOC	COCO	ImageNet
(pixel)	(instance)	AP	mAP	top-1 acc
\checkmark		58.8	40.8	55.1
	\checkmark	53.4	40.5	65.4
√	✓	58.7	40.9	66.3

Table 4. Transfer performance of combining a pixel-level and an instance-level method. "SimCLR*" denotes a variant of SimCLR with the same encoders as our pixel-level approach. 100 epoch pre-training is adopted for all experiments.

Thanks