Efficient Off-Policy Meta-Reinforcement
Learning via Probabilistic Context Variables

Kate Rakelly ' © Aurick Zhou'”™ Deirdre Quillen' Chelsea Finn' Sergey Levine '

ICML 2019



I Introduction

O On-policy learning
Only one policy used throughout the system to both explore and select

actions.
sample inefficiency

eg: policy gradient

O Off-policy learning
Two policies, one for exploring and the other for action selection.
eg: DQN



I Introduction

O Meta-Reinforcement Learning

The agent can leverage varied experiences from previous tasks to adapt
quickly to the new task at hand.

3/23



I Motivation

O Most meta-learning RL systems use on-policy learning. The
general problem with on-policy learning is sample inefficiency.

6000

average return

2000

4000

0 =

0

Off-policy RL (SAC) is more sample efficient
than on-policy approaches (PPO) by 1-2 orders
of magnitude (PPO eventually nears SAC
performance), figure from Haarnoja et al. 2018.

Tackle the problem of efficient of f-policy meta-reinforcement learning.

4/23



I Method

O Meta-training : learn a probabilistic encoder that accumulates the
necessary statistics from past experience into the context variables.

O Meta-testing : the context variables can be sampled and held constant
for the duration of an episode, enabling temporally-extended
exploration.

5/23



I Method-Context Variable

A_TaSk : T — {p(S[l):p(St+l|St: af-): T(St: at)} (S a, S T _'—*‘I’¢(2|Cl)j' %( ‘ )
: A
c) = (Sn.an,7,,s),) : one transition in the task 7 (s,8,¢',7) Nﬁ-_.q;é zlen )
z . latent probabilistic context variable The inference network
v .
Gaussian factors W@l NI
W, (zlcy,) :N(f{; (Cn):fg(ﬂn)) -

Dy,
replay | S">"' ik
buffer

Qﬁ(ss a, Z) — ﬁcmt‘ac

i (alern) x T, 0y (zlc,) T © olaln2)— Lo

train tasks

permu'ra'rioq-invar'ian’r function of Meta-training procedure
prior experience

6/23



I Method-Meta-training

Algorithm 1 PEARL Meta-training
Require: Batch of training tasks {7;},—1..7 from p(7),
learning rates «vy, g, a3
1: Initialize replay buffers B* for each training task
2: while not done do
3 for each 7; do
4 Initialize context ¢' = {}
5: fork=1...., Kdo
6
7
8
9

Sample z ~ g, (z|c’)
Gather data from 7y (als, z) and add to B*
Update ¢’ = {(sj,ay, S}J-"j)}j;l...;\r ~ B

: end for
10: " end for
11:  for step in training steps do
12: for each 7; do
13: Sample context ¢’ ~ 8. (") and RL batch b* ~
Bi
14: Sample z ~ g,(z[c")
15 ,_zﬂﬂt_:__’c_aﬁfﬁlf_{@i z)
16: e iie = Leritic(V',2))
17: Lier, = BDxe(a(zlc )[[r(2))
18: end for

19: Q< @ — Oflvc_f» Z-i (ﬁifp-ﬁt-ﬁc + Ei’L)
20- Or < 0 — 2V >, L]

q_cto*r
21: Oo «+ 0 — azVy Ei— Liritic
22:  end for

23: end while

q(2|c) N(0,1)
3~*= A
] z

o

‘ Qﬂ(ss as Z) —_— ﬁCT‘itiC
e
train tasks

Meta-training procedure

exp(Qo(s, a, 5)))}

e =E5~E.,a~7rg [DKL (ﬂ-ﬁ (a|s,, E)

zZ~(qg(Z|c) Zp (S)
Leritic = Egs are)slQo(s:2,2) — (r+ V(s',2)))%
2zl )

7/23
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor



I Method-Meta-testing/Adaptation

Algorithm 2 PEARL Meta-testing
Require: test task 7 ~ p(7T)
1: Initialize context ¢’ = {}
2: fork=1,..., K do
3:  Sample z ~ gy4(z|cT)
4:  Roll out policy my(als,z) to collect data D] =
{(Sj-, aj, S_;'a T‘j)}j;l...N
5. Accumulate context ¢’ = ¢’ U D]
6: end for

8/23



I Experiments-Sample Efficiency and Performance

Half-Cheetah-Fwd-Back Half-Cheetah-Vel Humanoid-Direc-2D

average return

0 1 2 3 4 5 00 04 08 1.2 1.6 2.0 0.0 02 04 06 08 1.0

Ant-Fwd-Back Ant-Goal-2D 1e6 Walker-2D-Params 1e6

1500-

~200- '
1250-
600-

g 1000- —400-_‘{’_ ________________
uJ -

= 750-

% —600-

€ 500-

>

m

[N
u
o

I
i
[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
oo
o
S

= 1000 -
00 06 12 18 24 30 00 02 04 06 08 10 O 1 2 3 4 5
time steps leb time steps le7 time steps leb
- PEARL (ours)  =—— ProMP MAML RL2 - = final performance

Figure 3. Meta-learning continuous control. Test-task performance vs. samples collected during meta-training. Our approach PEARL
outperforms previous meta-RL methods both in terms of asymptotic performance and meta-training sample efficiency across six benchmark
tasks. Dashed lines correspond to the maximum return achieved by each baseline after 1e8 steps. By leveraging off-policy data during
meta-training, PEARL is 20-100x more sample efficient than the baselines, and achieves consistently better or equal final performance
compared to the best performing prior method in each environment. See Appendix A for the full timescale version of this plot. 9/23



I Experiments-Posterior Sampling For Exploration

z ~ p(z) z ~ gy(2|cr:10) 2 ~ gg(2|c1:30)

Return

Figure 4. Sparse 2D navigation. The agent must navigate to a
previously unseen goal (dark blue, other test goals in light blue)
with reward given only when inside the goal radius — radius of 0.2
(1llustrated) and 0.8 are tested here. The agent is trained to navigate
to a training set of goals, then tested on a distinct set of unseen test
Test-time adaptation trajectories goals. By using posterior sampling to explore efficiently, PEARL
1s able to start adapting to the task after collecting on average only
5 trajectories, outperforming MAESN (Gupta et al., 2018).

I PEARL (ours) B MAESN — 0.2 - 0.8

10/23



I Experiments-Ablations

Half-Cheetah-Vel

0
= PEARL (ours)
PEARL, RMNN de-correlated
—20  —— PEARL, RNN correlated
c
| -
E W"W
E _4'(} -"J‘J‘"'J
m r
o
O _60
Q
=
o
—80
—100
0.0 0.2 0.4 0.6 0.8 1.0

million steps

Figure 5. Recurrent encoder ablation. We compare our encoder
architecture to a recurrent network. For the RNN, we sample
context as trajectories rather than unordered transitions. Sam-
pling the actor-critic batch as de-correlated transitions (“RNN de-
correlated”) fares much better than sampling trajectories ("RNN
correlated”). In addition to better performance, our encoder has a
computational advantage.

Half-Cheetah-Vel

0
~— PEARL (ours)
PEARL, off-policy
—20  —— PEARL, off-policy same batch
c
-
=3
D -40
—
)
(o))
C —60
)
>
5 r
-80 W
—-100
0.0 0.2 0.4 0.6 0.8 1.0

million steps

Figure 6. Context sampling ablation. PEARL samples context
batches of recently collected transitions de-correlated with the
batches sampled for training the actor-critic. We compare to sam-
pling context from the entire history (“off-policy context™), as well
as using the same sampled batch for the context and the actor-critic
batch (“off-policy same batch™).

11/23



I Experiments-Ablations

Sparse 2D navigation
12

—— PEARL (ours)
—— PEARL, deterministic

10

average return

0.2 0.4 0.6 0.8 1.0
million steps

Figure 7. Deterministic latent context. We compare PEARL to
a variant with deterministic latent context on the sparse reward
2D navigation domain. As expected, without a mechanism for
reasoning about uncertainty over tasks, this approach is unable to
explore effectively and performs poorly.

12/23



Meta-Q-Learning

Rasool Fakoor', Pratik Chaudhari®; Stefano Soatto', Alexander Smola!
1 Amazon Web Services

2 University of Pennsylvania

Email: {fakoor, soattos, smola} @amazon.com, pratikac@seas.upenn.edu

ICLR 2020



I Contribution

O Q-learning is competitive with state-of-
the-art meta-RL algorithms if given
access to a context variable that is a L m TOscone = rEARL
representation of the past trajectory. N

O A multi-task objective o maximize the e
average reward across the training tasks ﬂ I

is an effective method to meta-train RL .

policies. 0 e Aces  vrCren e HarCresan e
O Past data from the meta-training replay

buffer can be recycled to adapt the G — arg max - Z E_[¢0)

policy on a hew task using of f-policy T el

updates.

14/23



I Method-Context Variable

O recurrent context variable =z

Set z to the hidden state at time ¢ of a Gated Recurrent Unit (GRU)
model.

» depends on {(zi. ui,7i)}ic

policies us(z) ue(, 2)

value functions e (z,u) qp(T,u,2)



I Method-Meta-training

Algorithm 1: MQL - Meta-training
Input: Set of training tasks Dpeia

1 Initialize the replay buffer
2 Initialize parameters @ of an off-policy method, e.g., TD3
3 while not done do

4 // Rollout and update policy

Sample a task DD ~ Dera

Gather data from task D using policy 7 while feeding transitions through context GRU. Add
trajectory to the replay buffer.

7 tt < Sample mini-batch from buffer

8 Update parameters # using mini-batch & and Eqn. (15)

—

10 return O , replay buffer

~ 1 —
Ometa = arg min — E [TDQ(Q)};
o Ny T~DE

16/23



I Method-Meta-training

O Objective

; T

~ 1 ‘
TD3 Ometa = arg min — E E {TD2 (9)]‘
Ometa = arg max — E 1) ) {F (9):| | > — 2
] n k=1 T~D TDZ(H) — (Qap(-’rg 'u) o Tfs: — q-k;(.’l‘-r, u.-;,a(:r!)))

O Analysis

MAML @ £5.(0) = £5(0 + aVel"(0))
Taylor series expansion & Gradient:

AW

‘meta

(0) = VL5(0) + 2a(m — 1) (V2L5(9)) VL5 (0) + O(a?).

ﬁ gradient

"(0) + a(m — 1) VE(0) |13

17/23



I Method-Meta-testing/Adaptation

O Update the policy using the new data

A ~ ‘
arg max{ E [f“cw(ﬂ)} ~3 16 — Hnmaﬂé} : (18)

ﬂ T DIIEU\'

O Exploits the meta-training replay buffer

A ~ ‘
arg max { E {B(T; D™ Dieta) E“EW(H)} — E||9 — 9mm||§} . (19)

& T~ Dieta

B(7: D™, Deta) =

new
P(re D™")
P (T € Dmeta) .

Normalized Effective Sample Size (ESS): A related quantity to 3(z) is the normalized Effective
Sample Size (ESS) which we define as the relative number of samples from the target distribution

D Ef f ec‘r ive Sa m p l e S i Ze p(z) required to obtain an estimator with performance (say, variance) equal to that of the importance

sampling estimator (10). It is not possible to compute the ESS without knowing both densities

E‘S__E l (Zfﬁ 1 d( )1 c [0 l]
m Zk 1*( k)
A=1-— ESS

arg m{ E [ ]+ E [8(r; D" Dya) ()] - (1-ESS) ||9—@;m||§}

fi T~ Dnew T~ Dmem

18/23



I Method-Meta-testing/Adaptation

Algorithm 2: MQL - Adaptation

¥ LI SN FUR

L= - - B -

10

11
12

Input: Test task D, meta-training replay buffer, meta-trained policy #ea

arg max
6 — gmeta ]

buf < Gather data from D using my,,,,,. i
Update Egn. (18) using buf P(r  D™")
Fit (D) using buf and meta-training replay buffer using Eqn. (12) B(r; D™, D“‘e‘ﬂ)lz P(reD,,.)

Estimate ESS using S(D) using Eqgn. (13) |
fori < ndo
i <+ sample mini-batch from meta-training replay buffer m 2
eulote B 1 =P ESs = Qs POy (13)
Calculate 3 for ¢ m >, Blzk)?
Update @ using Eqn. (19)

Initialize temporary buffer buf A .
{ E {E““*‘“’(H)} o ame,ang}. (18)

T Dew

Evaluate @ on a new rollout|/from task DD

return ¢

19/23



I Experiments

Average Validation Return

Average Validation Return

1250

-
o
o
o

750

g

250

o

=250

1500

1250

1000

750

500

250

Ant-Fwd-Back

v ¥
0.0 0.5 1.0 1.5 20 25 3.0
Meta-training Time-steps 1e6
Half-Cheetah-Fwd-Back
0.0 0.2 04 0.6 08 1.0 1.2
Meta-training Time-steps 1e6

Average Validation Return

Average Validation Return

-200

-300

-400

-500

-600

=700

-100

=150

-200

-250

-300

-350

0.0

w’

Ant-Goal-2D

0.2 04 0.6 0.8
Meta-training Time-steps

Half-Cheetah-Vel

1.0
1e7

— TD3

—— PEARL

0.5 1.0 1.5
Meta-training Time-steps

L aaEEERE

—— TD3 - context

20
1e6

Figure 2: Average undiscounted return of TD3 and
TD3-context compared with PEARL for validation
tasks from four meta-RL environments. The agent
fails to learn if the policy is conditioned only on the state.
In contrast, everything else remaining same, if TD3 is
provided access to context, the rewards are much higher.
In spite of not adaptating on the validation tasks, TD3-
context 1s comparable to PEARL.

20/23



I Experiments

Half-Cheetah-Fwd-Back

€ 2000
2
&
= 1500
9o
®
p<)
= 1000
>
]
&
ag 500
=4
0
0 1 2 3 4 5
Meta-training Time-steps 1e6
Half-Cheetah-Vel
E-oo
= /
(4
5 |
= -200
2 |
o
> \
o -300 \J
o
]
g /———\___.—
< 400
0.0 0.5 1.0 1.5 20
Meta-training Time-steps 1e6

Average Validation Return

Average Validation Return

-200

-400

-600

-800

-1000

1000

800

600

400

Ant-Goal-2D
0.0 0.2 0.4 0.6 0.8
Meta-training Time-steps 1e7
Humanoid-Direc-2D
—— ProMP
—— MQL{ours)
0.0 0.2 04 0.6 08 1.0
Meta-training Time-steps 1e6

Ant-Fwd-Back
1400
£ 1200
2
& 1000
c
LS 800
w
h=]
= 600
>
¥, 400
g
3 200
0
0.0 05 1.0 1.5 20 25 30
Meta-training Time-steps 1e6
Walker-2D-Params
800
E
2
o 600 ¢
13 = A A
W A \
5 \,IM‘\'/ < Vv \'AV"\‘I v\"\\f«v/" W
3 400
©
>
>
® 200
2
T
a 5 e
0 1 2 3 4 5
Meta-training Time-steps 1e6

Figure 3: Comparison of the average undiscounted return of MQL (orange) against existing meta-RL al-
gorithms on continuous-control environments. We compare against four existing algorithms, namely MAML
(green), RL2 (red), PROMP (purple) and PEARL (blue). In all environments except Walker-2D-Params and
Ant-Goal-2D, MQL is better or comparable to existing algorithms in terms of both sample complexity and final

returns.

21/23



I Experiments-Ablations

Half-Cheetah-Fwd-Back Half-Cheetah-Fwd-Back Half-Cheetah-Fwd-Back
E E E
2 1500 = 1500 = 1500
] ] ]
24 o o
c c c
2 L L
g 1000 g 1000 g 1000
o o o
> > >
L @ @
g 500 g 500 g 500
o o o
> > >
G —— TD3-context < — MaLg=0 < — A=05
0 — ML o — MaL o —— A=1-ESS
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Meta-training Time-steps 1e6 Meta-training Time-steps 1e6 Meta-training Time-steps 1e6
(a.1) (b.1) (c.1)
Ant-Fwd-Back Ant-Fwd-Back Ant-Fwd-Back
1000 1000 1000

Average Validation Return
Average Validation Return
Average Validation Return

400 400 400
—— TD3 - context — MaL —— A=1-ESS
200 — maL 200 —— MaL (8=0) 200 — A=05
0.0 0.5 1.0 15 20 25 0.0 0.5 1.0 1.5 20 25 0.0 0.5 1.0 1.5 20 2.5
Meta-training Time-steps 1e6 Meta-training Time-steps 1e6 Meta-training Time-steps 1e6

(a.2) (b.2) (c.2)
(a) MQL vs. TD3-context (b) MQL vs. MQL (3 = 0) (c) Choice of A = 1 — ESS

Figure 4: Ablation studies to examine various components of MQL.
22/23



Thanks




