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e Model reuse (also called learning from auxiliary classifiers, hypothesis transfer
learning) aim at reusing pre—trained models to help related learning tasks.
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 Updating the pre—trained model on the current task,
like fine—tuning neural networks.

* Training a new model with the help of source models, like biased
regularization. Or select source models properly for prediction.

~  Biased — 1. According to the performance
regularization on the labeled target data
(popular!) (TPAMI’ 14, ML’ 20)
learn the rate the 2. Require additional information
n (e.g., distribution gap)
target Select source source (Arxiv’ 20)
del? P
modet: models for models”
orediction 3. Exploit the unlabeled data (e.g.
(Arxiv’ 20) the semi—supervised metrics)

(submit to ICML)
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 Biased Regularized Least Squares

A . 1 -
W = argmin Z;((W’ X;) — ¥i)* + A IIW—W“CI’H;
=

we'H
where
training set S = {(x;, y;)}7_; target hypothesis h(x) = (ﬁf, x).
source hypotheses {w;“}’_, C 'H BeR and A € Ry

Introduce w’, such that w' = w — W 8. Then we have that problem (3) is equivalent

to
Target hypothesis

m
mip 1 5o+ w0+ ]
(Regularized ERM)
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Theorem 1 Let hy, g be generated by Regularized ERM, given a m-sized fraining set S
sampled i.i.d. from the target domain, source hypotheses {hi" : ||hi"| =< 1}'_,, any
source weights B obeying $2(B) < p, and » € R . Assume that £(hg g(X), y) < M for any
(x, y) and any training set. Then, denoting k = g and assuming that . < k, we have with
probability at least 1 —e™ ", ¥n > 0

A Rk RST¢ pic2 Mn
R(hg g) < Rs(hg g) + O + + 4
(hyw.g) = Rs(hy p) N —y Mn) (4)

m log (1 + ./ o
. K RsTC€ R p K /RS Mn \/F
< Ryg(hy ol — — | — —1), 6
=< Rs(hy.g) + (ﬂ(k +4/ . )+m( . + . (5)
where u’"® = R*'¢ (m + K‘,{n_@) + K4/ w.

hg (x) := D> Bihi™(x), function £2 is o -strongly convex R := R(hg")
where ° ; | gy B
hy g(X) 1= (W, X) + h%rc(x) £:Y x Y Ry is H-smooth

Remark: the excess risk shrinks at a fast rate of O(1/m). In other words, good prior
knowledge guarantees not only good generalization, but also fast recovery of the

performance of the best hypothesis in the class.
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Learning Categories from Few Examples

with Multi Model Knowledge Transfer

Tatiana Tommasi, Francesco Orabona, and Barbara Caputo

o T. Tommasi is with KU Leuven, ESAT-PSI and iMinds, Leuven 3001,
Belgium. E-mail: tatiana.tommasi@esat.kuleuven.be.

e F. Orabona is with Toyota Technological Institute at Chicago, Chicago, IL
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 Biased Regularized Least Squares SVM

2
L C e

w— ) Biwi| + 3 2
i=1

j=1
s.t. Y= w'o(x)+b+&, Vi=1,...,N,

min %
w.,b

where

N e
& = { 2N if y; = +1 slack variables &;

= ifyi=-1.

(weights of the examples, to
balance the different classes)

@
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* The source models are weighted by their LOO error
on the labeled target data

Proposition :
the prediction ¥;, obtained on sample i when it is removed from the training
set, is equal to
/ T an
a, B A;

==L+
& Pj; P;;

where

P,a’ A" are the quantities that are already
computed during the training phase.
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/ T A
a,—B_A;

il

CWi, vi) =Gl —yivily =& |y

i

where |x|. = max{0, x}.

N
min ) £y §i) subjectto Bl <1, pj=0.
i=1

 Time complexity O(N° + ]NZ)

N: The number of training examples
J: The number of source models
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Dataset: Caltech-256
Setting: leave-one-classout approach, that is considering in turn each class as
target and all the others as sources.

Compared methods:

o Adaptive SVM (A-SVM).  ICDM’'07

N
Hg)n lw — Bw|* + CZEH(WTQ’?(M), Vi)

=1

e Projective Model Transfer SVM (PMT-SVM). 1CCV’11
N
min [[w|? + BIRw||* + C 3 M (w o (x), yi)
i=1
s.t. w'@w=>0, |Rw|? = |wl|?*sin?¥,
where 6 is the angle between w and @.

e TrAdaBoost: boosting for Transfer Learning 1CML07
starting from the combination of source and target samples, iteratively
decreases the weights of the source data in order to weaken their

impact on the learning process B
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 Setting: data are coming one by one sequentially, and
there may emerge concept drift in the data stream.

 Framework: when the maximum update period is
achieved, or the abrupt change is detected, train a new
model with the help with historical models.

model reuse
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 Biased Regularized Least Squares SVM
1 m
W) = argmin,, - ZE (W, X;), yi) + s (W, wp) ¢,

i=1

where

W, Wp) =[lw — wp|°

— n
Wp = ijl PiW;
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 The historical models are weighted by their
performance on the labeled target data

e Weight update by expert advice

Bi+1.k X Br.k eXP{—UE()A’t,k, vi)}.

Figure 18.2 Prediction with expert advice. The experts, upon seeing a foot give expert
advice on what socks should fit it best. If the owner of the foot is happy, the
recommendation system earns a cookie!
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Fig.3 Performance comparisons (in predictive accuracy) of Condor with/without model reuse mechanism
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e Summary

Using the distribution difference to weigh the source models.
Requires to compute and upload the RKME values to represent the
distributions of source data (will not expose the raw data).

e Kernel Mean Embeddings (KME)
ue(P) i= [ K(x,)dP(x) k() = exp(=llx =) 7 >0
i (Px) = — % k(xn, ) Xex X={x, ", ~PV

* Reduced Set Construction {zm} are newly constructed vectors

2

~ A~ 2 Al 1 .
H‘uk(Px) — }”k(PR)H%k = H n; Nk(xn,-) o ”;1 ﬁmk(zm, )‘ H,
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Compute 4 b
RKME Uy h
> X
% f
_f2 .
o, Models (disagree on many areas)
A Compute Upload
A\ A RKME P
A I
5
- CEE&UEE N Learnware pool
s = | : > <I)3- Specifications denoted by  Specifications denoted
O O contours in feature space by points in RKHS
Training data & pre-trained RKMEs in feature space be?mware.?00|.
models of three solved tasks denoted by contours (model + ] ication)

®; (represented by B and Z),
Figure 1: An illustration of the upload phase.
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e Task—-recurrent assumption

The target task has the same distribution with one of the source task.

if task-recurrent assumption then
N 1
O =Y, vk(xn, )

Solution: i* = argmin, Hq)t — q)iHik
Y = f(X)
end if

e Instance—recurrent assumption

The distribution of the current task is a mixture of solved tasks.

Solution: “recover’ enough data points from test
distribution and learn a model selector on them.

—
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1 N C 2
min || — k(x,, ) — )y w;P;(- H , (12)
iy 5t~ oo,
arg max D(x), ifT=0
XT+1 = al‘g xex (I)( )_ 1 yvT g TS (13)
gmax, .y P(x) — 799 Lj—g k(xt,x), if T >1.

Estimate w as (12)
Initialize the mimic sample set S = &
while |S| is not big enough do
Sample a provider index i by weight w;
Sample an example x by kernel herding as (13)
S=SU{(x,i)}
end while
Train a selector ¢ on mimic sample S
forn=1:Ndo
i* = g(xn)
Yn = fir(xn)

end for

—
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O QO
...
1= @
O
o0 O

Reuse f, because of

Emplrical KME of minimal distance in RKHS

testing data in RI{HS

Unlabeled testing data
of the current task

ON®
0g O N
© A
o0 A
| I O 2A
Learnware pool
Generate a sample set to Learn a selector on Select pre-trained model
mimic the testing distribution the mimicked sample to predict each point

Figure 2: An illustration of the deployment phase.
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Dataset: CIFAR-100, 20-newsgroup

Setting:
« Divide CIFAR-100 into 20 local datasets, each having images from one
superclass, and build 5-class local neural network classifiers on them.

* For 20-newsgroup, there are 5 superclasses {comp, rec, sci, talk, misc}
and each is considered a local dataset for training local models in the

upload phase.

Compared methods:

e MAX

simply uses all the pre-trained models to predict one test instance,
and takes out the most confident predicted class.

e HMR (ICML19)

HMR incorporates a communication protocol which exchanges several
selected key examples to update models.

—
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Table 1: Results of CIFAR-100 in accuracy(%).

Task-recurrent Instance-recurrent
#Mixing tasks 1 2 5 10 20

MAX 43.00 4210 4151 41.62 41.44

HMR 70.58 6891 6893 68.88 68.81

a global Ours 86.22 7291 72,57 71.07 68.79
model trained

T — Global 75.08 7324 7331 71.86 73.24
data.

Table 2: Results of 20-newsgroup in accuracy(%).

Task-recurrent Instance-recurrent
#Mixing tasks 1 2 3 4 5
MAX 58.65 55.76 53.03 51.94 50.68
HMR 72.01 7219 70.86 7053 70.09
Ours 83.13 76.03 75.10 74.02 72.68
Global 72.06 7324 7331 71.86 73.24

—
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 Source tasks may have different label spaces.
But all the tasks are sampled from the common
space X,)

e Train one—class classifiers for each class. (for all
source models)

* Properly select M; source models for prediction,
rather than training a new one.

ff( ) = :”.; ZUI fh,,,n, Jm(f

@
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 Class—wise margin:

%Z:: fr,j(Tn1) gﬂixfkg (xnl))

e Instance—wise margin:

N
o O (i na) = max fig ()

n=1

where xn,l n-th instance of the [-th class

f k,j k-th source task of j-th class

—
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feature task rep.
L —> i module

h

metric module =% d(zt, zc)

Vol

model rep.
C=> module

Figure 1. The structure of MoreNet .

If a model C is reusable on task t, the distance between their
embeddings should be smaill.

—
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Table 1. The averaged accuracy on benchmark datasets. The validation and test margins indicate the class-wise margin based result over
validation set of size 100 and test data directly. All results are average accuracy (%)= standard deviation (%).

I Experiments

F-MMIST CIFAR-10 CIFAR-100(ITIM) - CIFAR-100 (ITOM)  CIFAR-100{OTOM)  Mini-ImageMNet (ITIM)  Mini-ImageNet (ITOM)  Mini-ImageNet (OTOM)
Class-Wise Margin BT.62=258 6ET0+3.46 5451297 52.3342.493 52.51+1.81 50.704+3.67 50.684+4.22 49.584+2.32
Instance-Wise Margin -~ ®7.7122.82 700N L3135 54294270 52.6243.59 51.83£2.29 51.3413.40 51.39+£3.90 49 864 1.98
Trusied Training 8964255 T6.59L1.96 60,87 £3.98 55584347 35.00£1.73 SRT34£3.12 360344341 32 74£2 88
Untrusted Training B3.68=349 74254214 61.19+4.19 5669+ 3.66 S5T02+2.06 58.624+3.67 56.47+3.34 53.06+2.64
Validation Margin 093.32=121 83.00L£2.4] T4.66x3.40 T2304L3.15 T2.054£3.22 72.9013.05 T1.73L2.00 69, 71+3.05
Test Margin 030521534 R35442725 R2.8H£1.30 80.27+£2.94 79491213 B0.56£1.78 TRO1ELTS T1.74£1.48
CIFAR-100 (ITIM) CIFAR-100 (ITOM) 0.70 CIFAR-100 (OTOM)
0.70
0.70
0.651
0.65
=0.65
< .60
S 060 0.60 :
< Y -
—l— Trusted Training
=&~ Untrusted Training 0.551
] 0.
0.55 —&— Class-Wise Margin 32
—¥— Instance-Wise Margin
0.50 - T T T T 0.50 v T T T 0.50— T T T T
1 3 5 7 10 1 3 5 7 10 1 3 5 7 10
Mini-lmageNet (ITIM) Mini-lmageNet (ITOM) 0,70 Mini-ImageNet (OTOM)
0.70 -
0.70
0.651
0.65 - 0.65
Y
e 0.60+
2 0.60 0.60
<
0.55 0.55 0-331
0.50+
0.504 : ; ; 0.50 1 - . - . - . ;
1 3 5 7 10 1 3 5 7 10 1 3 5 7 10

In-Task-In-Model (ITIM) : both the testing-stage label space and the models are the same to the training stage

# Instances Per Class

# Instances Per Class

# Instances Per Class
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* Model reuse methods use different criteria to evaluate the
reusability of source models on the target tasks. E.g., exploit

the labeled target data, compare the distribution gap, etc.

e Many of the existing work learn a target model with the
biased regularization due to its theoretical properties. While

the others try to select eligible source models to predict

the target data.
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e Extend the model reuse framework to semi—

supervised learning

' 1 TrL
ws = argmin — Z(HT:EE' —:)> + AMlu — w'||* + SSL_regularizer
Y i=1
e Extend the model reuse to active learning.

Motivation: When the initial labeled data is limited, the target model is unreliable.
Incorporate the source models may reduce the model uncertainty, and lead to

better data selection & model learning.

Shall we design an unified objective for target model learning,

source model reweighting and data selection?

—



