Multiple Instance Active Learning for Object Detection

Tianning Yuan, Fang Wan, Mengying Fu, Jianzhuang Liu, Songcen Xu, Xiangyang Ji and Qixiang Ye

- Contribution
 - > propose Multiple Instance Active Object Detection (MI-AOD)
 - design instance uncertainty learning (IUL) and instance uncertainty reweighting (IUR) modules.
 - > apply MI-AOD to object detection on commonly used datasets.
- Experiment Performance
- Ablation Study
- Model Analysis

How to evaluate the uncertainty of the unlabeled instances using _____ Instance Uncertainty Learning, IUL the detectortrained on the labeled set.

MI-AOD

how to precisely estimate the image uncertainty while filtering _____ Instance Uncertainty Re-weighting, IUR out noisy instances.

Instance Uncertainty Learning

*Using the RetinaNet as the baseline construct a detector

(b) Maximizing Instance Uncertainty

$$\underset{\Theta \setminus \theta_g}{\operatorname{argmin}} \mathcal{L}_{max} = \sum_{x \in \mathcal{X}_L} l_{det}(x) - \sum_{x \in \mathcal{X}_U} \lambda \cdot l_{dis}(x), \text{ prediction discrepancy loss} \\ l_{dis}(x) = \sum_i |\hat{y}_i^{f_1} - \hat{y}_i^{f_2}|$$

(c) Minimizing Instance Uncertainty.

$$\operatorname*{argmin}_{\theta_g} \mathcal{L}_{min} = \sum_{x \in \mathcal{X}_L} l_{det}(x) + \sum_{x \in \mathcal{X}_U} \lambda \cdot l_{dis}(x).$$

Instance Uncertainty Re-weighting

where $\mathbb{1}(a, b)$ is a binarization function. When a > b, it returns 1; otherwise 0.

Experiment

Performance

Training		Sample Selection			mAP (%) on Proportion (%) of Labeled Images							
IUL	IUR	Rand.	Max Unc.	Mean Unc.	5.0	7.5	10.0	12.5	15.0	17.5	20.0	100.0
		\checkmark			28.31	49.42	56.03	59.81	64.02	65.95	67.09	
\checkmark		\checkmark			30.09	49.17	55.64	60.93	64.10	65.77	67.20	77 28
\checkmark			\checkmark		30.09	49.79	58.94	63.11	65.61	67.84	69.01	11.20
\checkmark				\checkmark	30.09	49.74	60.60	64.29	67.13	68.76	70.06	
	\checkmark	\checkmark			47.18	57.12	60.68	63.72	66.10	67.59	68.48	
	\checkmark		\checkmark		47.18	57.58	61.74	64.58	66.98	68.79	70.33	78.37
	\checkmark			\checkmark	47.18	58.03	63.98	66.58	69.57	70.96	72.03	

Training	mAP (%) on Proportion (%) of Labeled In						
IUL	2.0	4.0	6.0	8.0	10.0		
	51.01	61.48	69.14	75.14	79.77		
\checkmark	58.07	67.75	74.91	78.88	80.96		

w _i	Set	mAP (%) on Proportion (%) of Labeled Imgs.								
	501	5.0	7.5	10.0	12.5	15.0	17.5	20.0		
1	Ø	30.09	49.17	55.64	60.93	64.10	65.77	67.20		
$\hat{y}_i^{f_1}$	Ø	31.67	50.67	55.93	60.78	64.17	66.22	67.30		
1	$ \mathcal{X}_L $	42.52	54.08	57.18	63.43	65.04	66.74	68.32		
\hat{y}_i^{cls}	\mathcal{X}	47.18	57.12	60.68	63.72	66.10	67.59	68.48		

λ	k	mAP (%) on Proportion (%) of Labeled Imgs.								
~		5.0	7.5	10.0	12.5	15.0	17.5	20.0		
2	10k	47.18	56.94	64.44	67.70	69.58	70.67	72.12		
1	10k	47.18	57.30	64.93	67.40	69.63	70.53	71.62		
0.5	10k	47.18	58.41	64.02	67.72	69.79	71.07	72.27		
0.2	10k	47.18	58.02	64.44	67.67	69.42	70.98	72.06		
0.5	N	47.18	58.03	63.98	66.58	69.57	70.96	72.03		
0.5	10k	47.18	58.41	64.02	67.72	69.79	71.07	72.27		
0.5	100	47.18	58.74	63.62	67.03	68.63	70.26	71.47		
0.5	1	47.18	57.58	61.74	64.58	66.98	68.79	70.33		

Method	Time (h) on Proportion (%) of Labeled Imgs.								
witchiod	5.0	7.5	10.0	12.5	15.0	17.5	20.0		
Random	0.77	1.12	1.45	1.78	2.12	2.45	2.78		
CDAL [1]	1.18	1.50	1.87	2.19	2.68	2.83	2.82		
MI-AOD	1.03	1.42	1.78	2.18	2.55	2.93	3.12		

$$\operatorname{argmin}_{\Theta \setminus \theta_{g}} \mathcal{L}_{max} = \sum_{x \in \mathcal{X}_{L}} l_{det}(x) - \sum_{x \in \mathcal{X}_{U}} \lambda \cdot l_{dis}(x), \quad (2)$$

$$\operatorname{argmin}_{\theta_{g}} \mathcal{L}_{min} = \sum_{x \in \mathcal{X}_{L}} l_{det}(x) + \sum_{x \in \mathcal{X}_{U}} \lambda \cdot l_{dis}(x). \quad (4)$$

$$\operatorname{argmin}_{\tilde{\Theta} \setminus \theta_{g}} \tilde{\mathcal{L}}_{max} = \sum_{x \in \mathcal{X}_{L}} \left(l_{det}(x) + l_{imgcls}(x) \right) - \sum_{x \in \mathcal{X}_{U}} \lambda \cdot \tilde{l}_{dis}(x), \quad (8)$$

$$\widetilde{\mathcal{L}}_{gg} = \sum_{x \in \mathcal{X}_{L}} \left(l_{det}(x) + l_{imgcls}(x) \right) + \sum_{x \in \mathcal{X}_{U}} \left(\lambda \cdot \tilde{l}_{dis}(x) + l_{imgcls}(x) \right). \quad (9)$$

MI-AOD has the best performance when λ is set to 0.5 and k is set to 10k (for ~100k instances/anchorsineachimage).

MI-AOD costs less time at early cycles than CDAL.

Unlabeled Image IUL \hat{y}^{cls} IUR

Visualization Analysis.

IUR leverages the image classification scores to re-weight instances towards accurate instance uncertainty prediction.

Statistical Analysis.

MI-AOD approach can activate true positive objects better while filtering out interfering instances