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I Motivation

» A neural network demands a large amount of class-specific
labels for learning a discriminative model, this type of
labeling can be expensive to collect.

»Pairwise similarity between examples, which Is a weaker
form of annotation, Is easily to collect.



I Meta classification learning
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Figure 1: Problem reduction schemes for multi-class classification. This work proposes scheme (b),
which introduces a binary classifier that captures s;;. Note that s;; represents the probability that x;
and ; belong to the same class.



I Meta classification learning

» Graphical representation for meta classification task
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I Meta classification learning

» Compute the likelihood
L£(0;X.S) ~ Zp S|Y)P(Y|X:6)
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Learning paradigms
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I Experiment

KCL:KLD-based Contrastive Loss(KCL)

» Cost between a similar pair:
Liop(riseg) = Dxu(all35) + Dxu(9]19:)-

» Cost between a dissimilar pair:

Lycr(wi, vj) = Ln(Dxkr yzH.Yj ) + Ln(Dxkr( YJHY?,
where Ly (e, 0) = max(0,0 — f)

» Total contrastive loss(KCL):

Lrcr = Z SijLycer (s xj) + (1= 845) Lgep (23, 75).

(2]



I Supervised learning with weak labels

Table 1: The classification error rate (lower 1s better) on three datasets with different objective
functions and different neural network architectures. CE denotes that the network uses class-specific
labels for training with a multi-class cross-entropy. MCL only uses the binarized similarity for
learning with the meta-classification criterion. KCL 1s a strong baseline which also uses binarized
stmilarity. The * symbol indicates the worst cases of KCL. The performance in parenthesis means
its network uses a better initialization (VGG16 and VGGS) or a learning schedule which 1s 10
times longer (VGG11). The two treatments are discussed in Section[3.2.1] We only use VGGS for
CIFAR100 since KCL performs the best with it on CIFAR10. Each value is the average of 3 runs.

o o ; (Class label) (Pairwise label)
Dataset #class Network CE KCL MCL
MNIST 10 LeNet 0.6% 0.5% 0.6%

[eNet 14.9% 16.4% 15.1%

VGGS 10.2% 10.2% 10.2%

VGG 8.9% 72.2(10.4)% 0.4%

VGGI16 7.6% =R1.1(10.3)%  8.3%

CIFARIO 10 ResNetl8 6.7% 73.8% 6.6%
ResNet34 6.6% 79.3% 6.3%

ResNet50 6.6% 79.6% 5.9%

ResNetl101 6.5% 79.9% 5.6%

CIFART00 100 VGGS 35.4% ¥45.3(40.2)%  36.1%



I Unsupervised cross-task transfer learning

Table 2: Unsupervised cross-task transfer learning on Omniglot. The performance (higher 1s better)
1s averaged across 20 alphabets (datasets), in which each has 20 to 47 letters (classes). The ACC and
NMI without brackets have the number of output nodes K equal to the true number of classes in a
dataset, while columns with "(K=100)" represent the case where the number of classes is unknown
and a fixed K = 100 is used.

Method ACC  ACC (K=100) NMI NMI (K=100)
K-means (MacQueen et al.,|1967) 21.7% 18.9% 0.353 0.464
LPNMEF (Cai et al..[2009) 22.2% 16.3% 0.372 0.498
LSC (Chen & Cail 2011 23.6% 18.0% 0.376 0.500
ITML (Davis et al.,[2007) 56.7% 47.2% 0.674 0.727
SKKm (Anand et al..[2014) 62.4% 46.9% 0.770 0.781
SKLR (Amid et al..[2016) 66.9% 46.8% 0.791 0.760
CSP (Wang et al.[[2014) 62.5% 65.4% 0.812 0.812
MPCK-means (Bilenko et al.||2004)  81.9% 33.9% 0.871 0.816
KCL (Hsu et al.| 2018) 82.4% 78.1% 0.889 0.874

MCL (ours) 83.3% 80.2% 0.897 0.893




ISemi-supervised learning
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(c) Pseudo-MCL for semi-supervised learning

Table 4: Test error rates (lower is better) obtained by various semi-supervised learning approaches
on CIFAR-10 with all but 4,000 labels removed. Supervised refers to using only 4,000 labeled
samples from CIFAR-10 without any unlabeled data. All the methods use ResNet-18 and standard
data augmentation.

Method CIFAR10 4k labels
Supervised 25.4 £ 1.0%
Pseudo-Label 19.8 £ 0.7%
[T-model 19.6 + 0.4%
VAT 18.2 + 0.4%
SPN-MCL 22.8 +£0.5%

Pseudo-MCL

18.0 + 0.4%
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