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Motivation

Figure 1. Samples from a baseline BigGAN that reflect the gender bias underlying the true data distribution in CelebA. All faces above
the orange line (67%) are classified as female, while the rest are labeled as male (33%).

biased dataset will result that generative model have biased
performance



Setup

Dref = A small unbiased dataset
two dataset :

Dbias —_— A |arge biased dataset

Goal: generated data Pdata  Pdata = Pref



Method: Importance Reweighting
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Algorithm 1 Learning Fair Generative Models

Input: Dyi.s, Dyet, Classifier and Generative Model

Architectures & Hyperparameters

: Estimate importance weight 1(x) <

Output: Generative Model Parameters ¢

: > Phase 1: Estimate importance weights
: Learn binary classifier ¢ for distinguishing (Dpas, Y =

0) vs. (Dyer, Y = 1)
c(Y=1|x)

m fDI' all

X € Dhas (using Eq. 5)
Set importance weight w(x) <— 1 for all x € D;f

6: > Phase 2: Minibatch gradient descent on # based on

i

10:

12:

13:
14:

weighted loss
Initialize model parameters # at random
Set full dataset D <+ Dyias U Dyet
while training do
Sample a batch of points B from D at random
Set loss L(0; D) «+ IFT}I D e W(xi)l(x4.0)
Estimate gradients V£ (6; D) and update parame-
ters 6 based on optimizer update rule
end while
return ¢

w(x)

Pref (X) . (Y = 1|x)

pbias(x) - Jr1 —c* (Y = 1|T)

)



Experiments
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Figure 2. Distribution of importance weights for different latent subgroups. On average, The underrepresented subgroups are upweighted

while the overrepresented subgroups are downweighted.
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(a) Samples generated via importance rewelghtmg with subgroups separated by the orange line. For the 100 samples above,
the classifier concludes 52 females and 48 males.
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Figure 3. Single-Attribute Dataset Bias Mitigation for bias=0.9. Lower discrepancy and FID is better. Standard error in (b) and (c) over
10 independent evaluation sets of 10,000 samples each drawn from the models. We find that on average, imp-weight outperforms the
equi-weight baseline by 49.3% and the conditional baseline by 25.0% across all reference dataset sizes for bias mitigation.
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(a) Samples generated via importance reweighting. For the 100 samples above, the classifier concludes 37 females and 20
males without black hair, 22 females and 21 males with black hair.
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Figure 4. Mult-Attribute Dataset Bias Mitigation. Standard error in (b) and (c) over 10 independent evaluation sets of 10,000 samples each
drawn from the models. Lower discrepancy and FID is better. We find that on average, imp-weight outperforms the equi-weight
baseline by 32.5% and the conditional baseline by 4.4% across all reference dataset sizes for bias mitigation.



