

Few-Shot Adversarial Domain Adaptation

Saeid Motiian, Quinn Jones, Seyed Mehdi Iranmanesh, Gianfranco Doretto Lane Department of Computer Science and Electrical Engineering West Virginia University {samotian, qjones1, seiranmanesh, gidoretto}@mix.wvu.edu

N | P | S - 2 | 0 | 1 | 7

CONTENTS

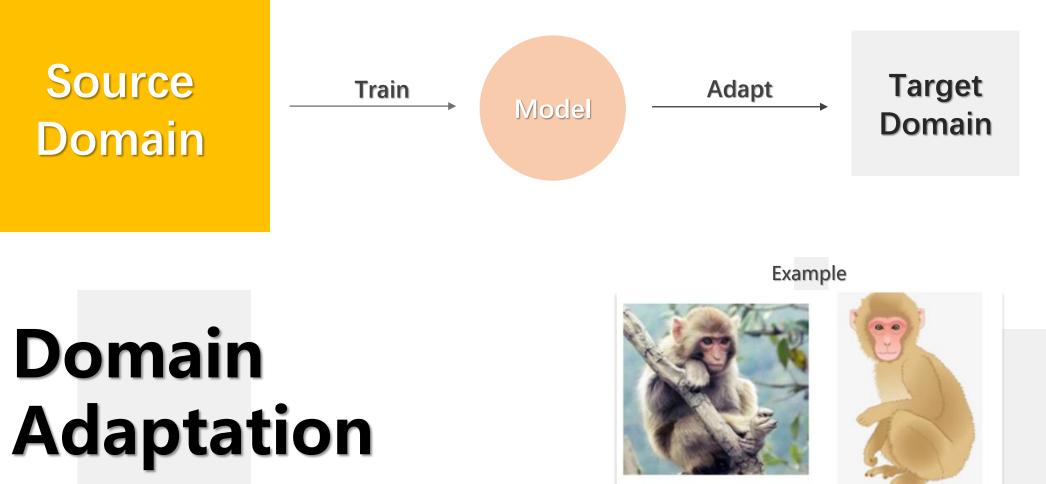
- 1. Introduction
- 2. Motivation
- 3. Methods
- 4. Experiments

Ξ

tio

Б

-



Source Domain $\sim P_S(X, Y)$ lots of **labeled** data

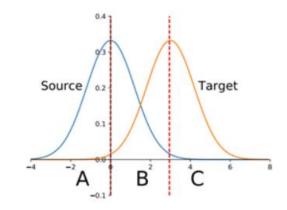
$$\neq$$

Target Domain $\sim P_T(Z, H)$ unlabeled or limited labels

 $D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$

 $D_T = \{(\mathbf{z}_j, ?), \forall j \in \{1, \dots, M\}\}$

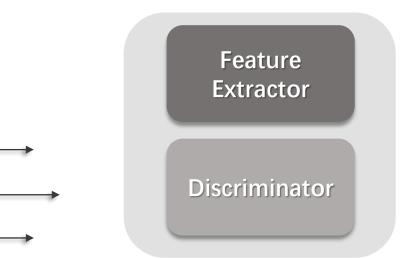
Domain Adaptation



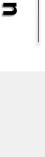
 Most domain adaptation approaches try to find a feature space such that the confusion between source and target distributions in that space is maximum (domain confusion).

Generative

Adversarial Network



 By training against the discriminantor, the feature extractor alines the source domain and target domain data distribution in the feature space.



ntro

0

2

0

0

Motivatio

Б

- Unsupervised domain adaptation (UDA) algorithms do not need any target data labels, but they require large amounts of target training samples, which may not always be available.
- 2 Supervised domain adaptation (SDA) algorithms do require labeled target data, and because labeling information is available, for the same quantity of target data, SDA outperforms UDA.

³ We aim at handling cases where there is only **one** target labeled sample, and there can even be some classes with **no** target samples at all.

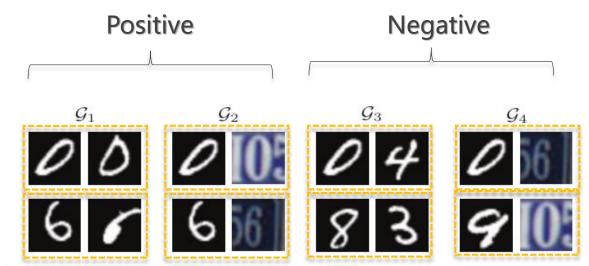


Figure 1: Examples from MNIST [32] and SVHN [40] of grouped sample pairs. G_1 is composed of samples of the same class from the source dataset in this case MNIST. G_2 is composed of samples of the same class, but one is from the source dataset and the other is from the target dataset. In G_3 the samples in each pair are from the source dataset but with differing class labels. Finally, pairs in G_4 are composed of samples from the target and source datasets with differing class labels.

$$f = h \circ g \qquad egin{array}{c} g: \mathcal{X}
ightarrow \mathcal{Z} \ h: \mathcal{Z}
ightarrow \mathcal{Y} \ f_s = h_s \circ g_s \end{array}$$

$$\int f_s = h_s \circ g_s$$
$$f_t = h_t \circ g_t$$

• If g_s and g_t are able to embed source and target samples, respectively, to a domain invariant space, it is safe to assume from the feature to the label space that $h_t = h_s = h$.

Ζ

P

h o d s

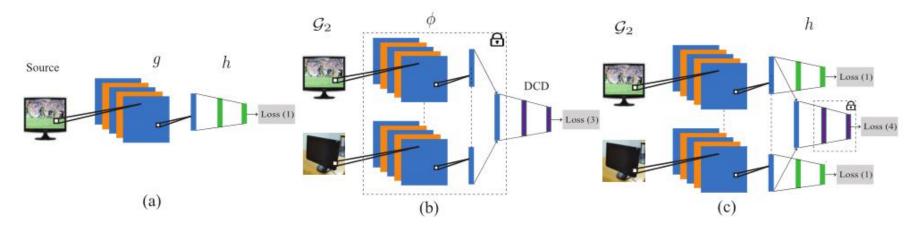


Figure 2: Few-shot adversarial domain adaptation. For simplicity we show our networks in the case of weight sharing $(g_s = g_t = g)$. (a) In the first step, we initialized g and h using the source samples \mathcal{D}_s . (b) We freeze g and train a DCD. The picture shows a pair from the second group \mathcal{G}_2 when the samples come from two different distributions but the same class label. (c) We freeze the DCD and update g and h.

$$\mathcal{L}_{C}(f) = E[\ell(f(X^{s}), Y)], \qquad (1)$$

$$\mathcal{L}_{FADA-D} = -E[\sum_{i=1}^{4} y_{\mathcal{G}_{i}} \log(D(\phi(\mathcal{G}_{i})))], \qquad (3)$$

$$\mathcal{L}_{FADA-g} = -\gamma E[y_{\mathcal{G}_{1}} \log(D(g(\mathcal{G}_{2}))) - y_{\mathcal{G}_{3}} \log(D(g(\mathcal{G}_{4})))] + E[\ell(f(X^{s}), Y)] + E[\ell(f(X^{t}), Y)], \qquad (5)$$

Algorithm 1 FADA algorithm

- 1: Train g and h on \mathcal{D}_s using (1).
- 2: Uniformly sample $\mathcal{G}_1, \mathcal{G}_3$ from $\mathcal{D}_s \mathbf{X} \mathcal{D}_s$.
- 3: Uniformly sample $\mathcal{G}_2, \mathcal{G}_4$ from $\mathcal{D}_s \mathbf{X} \mathcal{D}_t$.
- 4: Train DCD w.r.t. $g_t = g_s = g$ using 3.
- 5: while not convergent do
- 6: Update g and h by minimizing (5).
- Update DCD by minimizing 3.
- 8: end while

Table 1: **MNIST-USPS-SVHN datasets.** Classification accuracy for domain adaptation over the MNIST, USPS, and SVHN datasets. M, U, and S stand for MNIST, USPS, and SVHN domain. LB is our base model without adaptation. FT and FADA stand for fine-tuning and our method, respectively.

_	-		Traditional UDA		Adversarial UDA											
		LB	[60]	[45]	[15]	[33]	[59]	[49]	SDA	1	2	3	4	5	6	7
	$\mathcal{M} \to \mathcal{U}$	65.4	47.8	60.7	91.8	91.2	89.4	92.5	FT	82.3	84.9	85.7	86.5	87.2	88.4	88.6
									[38]	85.0	89.0	90.1	91.4	92.4	93.0	92.9
									FADA	89.1	91.3	91.9	93.3	93.4	94.0	94.4
	$\mathcal{U} \to \mathcal{M}$	58.6	63.1	67.3	73.7	89.1	90.1	90.8	FΤ	72.6	78.2	81.9	83.1	83.4	83.6	84.0
									[38]	78.4	82.2	85.8	86.1	88.8	89.6	89.4
									FADA	81.1	84.2	87.5	89.9	91.1	91.2	91.5
	$\mathcal{S} \to \mathcal{M}$	60.1	-	-	82.0	76.0	-	84.7	FΤ	65.5	68.6	70.7	73.3	74.5	74.6	75.4
									FADA	72.8	81.8	82.6	85.1	86.1	86.8	87.2
	$\mathcal{M} \to \mathcal{S}$	20.3	-	-	40.1	-	-	36.4	FΤ	29.7	31.2	36.1	36.7	38.1	38.3	39.1
									FADA	37.7	40.5	42.9	46.3	46.1	46.8	47.0
	$\mathcal{S} \to \mathcal{U}$	66.0	-	-	-	-	-	-	FΤ	69.4	71.8	74.3	76.2	78.1	77.9	78.9
									FADA	78.3	83.2	85.2	85.7	86.2	87.1	87.5
	$\mathcal{U} \to \mathcal{S}$	15.3	-	-	-	-	-	-	FΤ	19.9	22.2	22.8	24.6	25.4	25.4	25.6
									FADA	27.5	29.8	34.5	36.0	37.9	41.3	42.9

Table 2: **Office dataset.** Classification accuracy for domain adaptation over the 31 categories of the Office dataset. \mathcal{A} , \mathcal{W} , and \mathcal{D} stand for Amazon, Webcam, and DSLR domain. LB is our base model without adaptation. Since we do not train any convolutional layers and only use pre-computed DeCaF-fc7 features as input, we expect a more challenging task compared to [58, 27].

			-							
		Unsup	ervised M	ethods	Supervised Methods					
	LB	[60]	[34]	[15]	[58]	[27]	[38]	FADA		
$\mathcal{A} ightarrow \mathcal{W}$	61.2 ± 0.9	61.8 ± 0.4	68.5 ± 0.4	68.7 ± 0.3	82.7 ± 0.8	84.5 ± 1.7	$\textbf{88.2} \pm \textbf{1.0}$	88.1 ± 1.2		
$\mathcal{A} ightarrow \mathcal{D}$	62.3 ± 0.8	64.4 ± 0.3	67.0 ± 0.4	67.1 ± 0.3	86.1 ± 1.2	86.3 ± 0.8	$\textbf{89.0} \pm \textbf{1.2}$	88.2 ± 1.0		
$\mathcal{W} ightarrow \mathcal{A}$	51.6 ± 0.9	52.2 ± 0.4	53.1 ± 0.3	54.09 ± 0.5	65.0 ± 0.5	65.7 ± 1.7	$\textbf{72.1} \pm \textbf{1.0}$	71.1 ± 0.9		
$\mathcal{W} ightarrow \mathcal{D}$	95.6 ± 0.7	98.5 ± 0.4	$\textbf{99.0} \pm \textbf{0.2}$	$\textbf{99.0} \pm \textbf{0.2}$	97.6 ± 0.2	97.5 ± 0.7	97.6 ± 0.4	97.5 ± 0.6		
$\mathcal{D} ightarrow \mathcal{A}$	58.5 ± 0.8	52.1 ± 0.8	54.0 ± 0.4	56.0 ± 0.5	66.2 ± 0.3	66.5 ± 1.0	$\textbf{71.8} \pm \textbf{0.5}$	68.1 ± 06		
$\mathcal{D} \to \mathcal{W}$	80.1 ± 0.6	95.0 ± 0.5	96.0 ± 0.3	$\textbf{96.4} \pm \textbf{0.3}$	95.7 ± 0.5	95.5 ± 0.6	$\textbf{96.4} \pm \textbf{0.8}$	$\textbf{96.4} \pm \textbf{0.8}$		
Average	68.2	70.6	72.9	73.6	82.2	82.6	85.8	84.9		

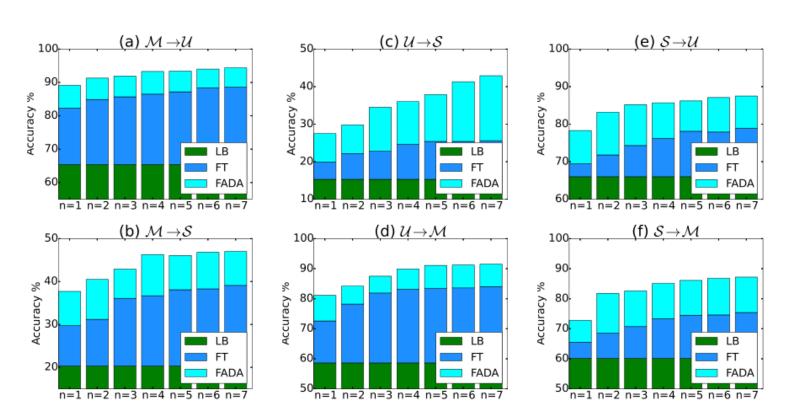


Figure 3: **MNIST-USPS-SVHN summary.** The lower bar of each column represents the LB as reported in Table 1 for the corresponding domain pair. The middle bar is the improvement of fine-tuning FT the base model using the available target data reported in Table 1. The top bar is the improvement of FADA over FT, also reported in Table 1.

THANKS FOR WATCHING

=