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Online On-policy RL

Find a optimal strategies which maximize the return

Agent
‘ l{—observe | r(At|St) \
State Reward Action
St Rt At
LI
:{— Re+1

1€ St+1

P(St+1|St,At)
R(St,At)

CSDN @ZJiFFF

On-policy RL is usually unstable because of the exploration-exploitation dilemma,

and sample-inefficient because of can't reuse past data
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Online Off-policy RL

The policy for generating interaction samples is different from the target policy
Replay
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update transition
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Imitation Learning

To address the challenge of reward function design, introduce expert demonstrations

State

Demonstrations
Data
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Offline/Batch RL

Policy is learned from a fixed dataset, enabling RL methods to take advantage of large,

previously-collected datasets

Interaction Data

Learner
Explorer(s)

Behavioral policies {T[E}

Action Action Application
Reward

State
State

—
CSDN @ZuiFFF

batch learning task

transitions
(s,a,rs')

1. Exploration 2. Learning 3. Application
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Growing Batch RL

Allows online exploration to expand the Offline dataset, but still use batch RL

algorithm to update policy
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growing batch learning task
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M, 3. Application
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Offline RL vs. IL

Demonstrations
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4

State

o Offline RL completely forbids Learner to interact with the environment

« The policy used to generates batch dataset in Offline RL can be any policy

—,
CSDN @7 ifiFFF
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Growing Offline RL vs. Online RL
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o The major difference is only in the method used to update the policy
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All kinds of RL paradigm

T niTER % f S o=+ =R HiEREREEE HihEREEFRE
Online (On-policy) v X X single transition v
Online (Off-policy) 't y A mini-batch X
Semi-batch v X Xt mini-batch v
Growing-batch 't . A entire-batch X
Offline/batch X - ¥ entire-batch x

Lange, Sascha, Thomas Gabel, and Martin Riedmiller. "Batch reinforcement learning."Reinforcement learning. Springer, Berlin, 9/3 6
Heidelberg, 2012. 45-73.



Why Offline?
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Related Work

« A naive idea is to execute online RL algorithm directly on an offline dataset, which
leads to Extrapolation error’ because of
1. Absent Data
2. Model Bias
3. Training Mismatch

« Noticed that the similarity between Offline-RL, Imitation Learning and Online Off-
policy RL. Two mainstream methods can be obtained from these two perspectives
1. RL-based algorithm: BCQ. BEAR. CQL. MOPOQ..
2. |L-based algorithm: MARWIL. AWR. BAIL...

1. Fujimoto, Scott, David Meger, and Doina Precup. "Off-policy deep reinforcement learning without exploration." 1 1 /3 6
International Conference on Machine Learning. PMLR, 2019.
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Why we need a benchmark?

One important observation we make, which was not brought to light in previous batch
DRL papers, is that batches generated with different seeds but with otherwise exactly

the same algorithm can give drastically different results for batch DRL’.

If different research teams use different datasets, or the implementation details of the

same algorithm are different, it is not conducive to fair comparison between

algorithms

A widely-accessible and reproducible benchmark can promote the research work and

enhance the practicability of the algorithm applying in the real world

Chen X, Zhou Z, Wang Z, et al. BAIL: Best-action imitation learning for batch deep reinforcement learning[J]. arXiv preprint 1 3/3 6
arXiv:1910.12179, 2019.



Contribution

1.

A set of baseline sequential decision tasks, with corresponding simulation
environment

Open source interactive datasets of each task. Data sources include not only
Online RL Agent, but also human expert demonstration and hand-coded controller,
which are closer to the data collection process in the real world

Implementation of popular Offline RL algorithms under the same specification

Easy-use API for tasks, datasets, and algorithms
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Dataset properties

In order to be as close to the real-world application as possible, the Offline dataset
should have the following properties
1. Narrow and biased data distributions
Undirected and multitask data
Sparse rewards

Suboptimal data

v & W N

Non-representable behavior policies, non-Markovian behavior policies, and
partial observability

6. Realistic domains

15/36



Environments and Tasks

Non- Non- . . sparse ) o Partial
narrow T markovian undirected multitask rewards Suboptimal realistic B T
Maze2D v v W
AntMaze y v y A
Gym-MuJoCo Y Y
Adroit y v y \l
FrankaKitchen y y xl
Flow i )
Offline CARLA A " N N N

Maze2D - maze2d

AntMaze - antmaze

Gym-MulJoCo - hopper/halfcheetah/walker2d
Adroit - pen/hammer/door/relocate
FrankaKitchen - kitchen

Flow - ring/merge.

Offline CARLA - lane
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Curriculum Offline Imitating Learning
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Quantity-quality dilemma

o Offline imitation learning can always stably learn to perform as the behavioral
policy, which may be helpful under single-behavior datasets. However, BC may fall
in learning a good behavior under a diverse dataset containing a mixture of

policies (both goods and bads)

o Quantity-quality dilemma: On mix dataset,

1. Top data owns higher quality but less quantity, and thus cause serious

compounding error problems

2. More data provides a larger quantity, yet its mean quality becomes worse.
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Verification Experiment

50001 — top 10% i | 4 —— COIL (Ouss)
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(a) Ordered trajectories. (b) Returns of BC v.s. COIL.

Figure 1: Examples of the quality-quantity dilemma for BC. (a) Tra-
jectories of the Walker2d-final dataset ordered by their accumulated
return. (b) Performances of behavior cloning (BC) for learning the
top 10%, 25%, 50%. and 100% trajectories of the dataset.
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« Important observation: Under RL scenarios, the agent can imitate a neighboring

policy with much fewer samples (by BC).
o Extend to a solution for mixed datasets: The agent can adaptively imitate the

better neighboring policies step by step and finally reach the optimal behavior

policy of the dataset

3500 fooooooooo oo T R Ly
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£ 2500- 2
L
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Sh o
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E 1500 ﬁ 2 —&— Random
=< 1000 - ! | = 1000 - ' —8— /3 Trained
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500 i i % 1/3 Return 0- f/‘.—" —»— 1/3 Return
0 f— : '
Random  1/3 2!3 Demo Initial 4 256 1024
Tested Policies Nurnber of Trajectories
(a) Online training curve. (b) Final performance of BC.

Figure 2: (a) Online training curves of an SAC agent trained on the Hopper environment, where the
crosses and dashed lines indicate the stage of selected policies. (b) Final performances achieved by
imitating the demo policy using BC, initialized with different stages of policies. The curves depict the fact

that close-to-demonstration policy can easily imitate the demonstrated policy with fewer samples. 20/36



Key lIdea

Theorem 1 (Performance bound of BC). Let IT be the set of all deterministic policy and |T1| = | A[!S],

Assume that there does not exist a policy ™ € 11 such that w(s') = a',Vi € {1,--- ,|D|}. Let 7, be
the empirical behavior policy as well as the corresponding state marginal occupancy is pz,. Suppose
BC begins from initial policy mo, and define p, similarly. Then, for any 6 > 0, with probability at
least 1 — 0, the following inequality holds:

D (pe (5.0l (,0) < e . D)
where c(mo,m, D) = 3 S pr(s) + 2 Z pr(5) = pro(s)| + 5 LS pro(5) = g (5)]

s¢D SQD S§E'D

-

T
initialization gap

|D| 1 1
s s (s log |S| + log(2/0) | 2 log |TT| + log(2/6)] 2
SEZDIpﬂ( ) = pa )|+ 1 Z]I[ (s) # '] h[ 2D ] + [ D] ] J

B C cap data gap
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Analysis of the second item

3 3 1pe(5) = pro(9)
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(c) Empirical discrepancy.

(c) Empirical estimation on the discrepancy between the initialized policy and the
trained policy outside the support of the demonstrations. Initialized with a closer-
to-demo policy always enjoys more minor discrepancy.
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« Generally, given the same discrepancy c(n0, mb, |D|) = C, if the initialized policy

narrows down the /n/tialization gap as is close to the demonstrated policy, then the

requirement for more samples to minimize the data gap can be relaxed.

Adaptive
- experience picking

(] Interact and sample data n
r
Pollc | Policy
icy
Q Network Network I Network
Off—policy

training b =--
(a) Online off-policy training. (b) Cumculum offline imitation learning.

Figure 3: Comparison between online off-policy training and curriculum offline imitation learning.

R
> Offline
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Imitation learning

Replay
Buffer
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Online RL as Imitating Optimal Policies

maximize B [R(7)]

A

principle of maximum entropy

P*(7) o< exp (R(7))

v
minimize D (Pr(7)[| P*(7))

Pe(7) = p(50) S0y T(s041]50, ar)m(acls:) l

n = 1 = Ve Dien (Pr(7)I|P" (7))
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Offline RL as Adaptive Imitation

« Construct a finite policy sequence 7V 7! 7l 72 72 ... N ¥
such that 7% < i+l , where 7t is characterized by its trajectory, which is picked
from database based on the current policgi-1 %, s the imitation result tazken
as the target policy.

 Formally, with dataset {D}¥ , at every training stage i, the agent updates its poligy?

by adaptively selecting - ~ #¢t1 from 7 as the imitating target such that

'-'THI —3 ﬂ'i - v:Ir}-_)}f{}; (P-rr'i ('i’-)||Pvrfa (T)) <€<—— Similar to Online RL
s.t. Ex [DKL (‘ﬁ'Hl (-|s)||7" (|S))] < € <— must be neighboring policy
Rf;f — R > < must be better policy
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7 = 1" — VD, (Psi (7)]| P (7))
s.t. Ex [Dg (7' (¢|s)||7"(+]s))] <e

RL — Ri(<)

ERSITAT ,

WHAHRrHEDL, IRIMTHES M3l RMEERNESE [« ZAEHrevieveriidl, HIBCEREIRENET RN, IFERRTAER LHEH-
FNESE R arniv E EE (EIERRREA, 2 REZALE .
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Select episodes

Select trajectories which are sampled by a neighboring policy

Ex [Dxr (7(|s)l|m(-]s))] < e

i

Importance sampling ratio ~ 1

’

Observation 1. Under the assumption that each trajectory Tz in the dataset D is collected by an
unknown deterministic behavior policy 7 with an exploration ratio [3. The requirement of the KL
divergence constraint Ez [Dgp(7(-|s)||7(-|s))] < e suffices to finding a trajectory that at least 1 — [3
state-action pairs are sampled by the current policy m with a probability of more than €. such that

€. > 1/ expe, ie.:
E(s,a}e'r;, []I(?T(&IS) > Ec)] >1- B ’ (8)

Set B = 0.05 as an intuitive ratio of exploration. As for €. , we let the agent choose
the value through finding N appropriate trajectories
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Return Filter

. Refrain the performance from getting worse by imitating to a poorer target than

the current level of the imitating policy

« Evaluate current policy's performance based on the learned curriculum

Vi=(1—-a) Vk—1+a- -min{R(7)}}
D={reD|R(t) >V}
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Pseudo code

Algorithm 1 Curriculum Offline Imitation Leaming (COIL)

Require: Offline dataset D, number of trajectories picked at each curriculum N, moving window of
the return filter ov, number of training iteration L, batch size B, number of pre-train times 7', and
the learning rate 7.

Initialize policy 7 with random parameter 6.
Initialize the return filter V' = 0.
if D is collected by a single policy then

Do pre-training for 7" times using BC.

end if
while D # () do
forall ; € Ddo - - -
Calculate 73(m) = {m(aj|s5), m(ai|s}), -, w(aj|s})}.
Sort 7i(m) into {m(a@y|5p), m(@i|51), -+ ,m(@,|5,)} in an ascending order, such that

m(@;|55) < w(@ +1|S;,+1) je[0,h—1]

Choose s(7;) = w(at @) 4, |SLﬁhJ) as the criterion of 7;.
end for
Select N = min{ N, |D|} trajectories {Tkl with the highest s(7) as a new curriculum.
Initialize a new replay buffer B with {7};".
D =D\{7}'.
forn=1— L x N do

Draw a random batch {(s,a)}¥ from B.

Update my using behavior cloning

B

0 < 0 —nVy Z [— log ma(aj|s;)]

j=1

end for
Update the return filter V « (1 — o)V + a - min{R(7)}¥.

by D=1{reD| A2V} 29/36
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COIL keeps a similar
training path as the online
agent, thanks to the
experience picking strategy
and the return filter

COIL finally terminates with
a near data-optimal policy,
suggesting a nice property
that the last offline model
can be a great model for
deployment
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Table 1: Average performances on final datasets, the means and standard deviations are calculated over 5 random

seeds. Behavior shows the average performance of the behavior policy that collects the data.
AWR BAIL CcQL COIL (Ours)

Dataset Expert (SAC) Behavior BC
hopper-final 3163.3 (444) 9745 14804 (800.2)  1609.7 (489.7) 22969 (915.9)  501.5(227.5)  2872.5(133.9)
4866.03 (68.6) 26849  2099.6(2101.3) 3213.8(1682.9) 4236.2(1531.1) 26043 (1937.6) 43913 (697.8)

walker2d-final

halfcheetah-final 9739.1 (113.6) 71224  6125.6(3910.9) 7600.9(1153.4) 9745.0 (880.3)  10882.0 (1042.7) 9328.5 (1940.6)

COIL substantially outperforms the other baselines for the final buffer dataset. COIL

reaches the performance close to the optimal policy.
BAIL and AWR can not always find the optimal behavior due to the difficulty of its

hyperparameters tuning and value regression.
e BCthatlearns a mediocre policy
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Experiments on D4RL

Table 2: Average performance on D4RL datasets. Results in

columns is our implementation that are tested

among 5 random seeds. The other results are based on numbers reported in D4RL among three random seeds
without standard deviations. Best /% shows the average return of the top 1% best trajectories, representing the
performance of the optimal behavior policy: Behavior shows the average performance of the dataset.

Dataset Expert (D4RL) Behavior Best1% BC (D4RL) BC (OQurs) COIL (Ours) BAIL MOPO  SoTA (D4RL)
hopper-random 32343 295.1 3404 299 .4 330.1 (3.5) 378.5(15.2) 318.0(5.1) 432.6 376.3
hopper-medium 32343 1018.1  3076.4 923.5 1690.1 (852.0)  3012.0(332.2)  1571.5(900.7)  862.1 25573
hopper-medium-replay 32343 466.9 1224.8 3644 853.6 (397.5) 1333.7 (271.1) 808.7 (192.5) 3009.6 12273
hopper-medium-expert 32343 1846.8 37357 3621.2 3527.4 (504.1) 3615.5(168.9) 24359 (1265.2)  1682.0 3588.5
walker2d-random 45923 1.1 25.0 73.0 171.0 (59.3) 320.5 (70.7) 130.8 (87.2) 597.1 336.3
walker2d-medium 45923 496.4 3616.8 304.8 1521.9 (1381.3) 2184.5(1279.2) 1242.4(1545.77) 643.0 37258
walker2d-medium-replay 45923 356.6 1593.7 518.6 T715.0 (406.5) 1439.9 (347.0) 5329 (359.0) 1961.1 1227.3
walker2d-medium-expert 45923 1059.7 51334 297.0 3488.6 (1815.1) 4012.3 (1463.0) 3633.9 (1839.7) 2526.0 5097.3
halfcheetah-random 12135.0 -302.6 -854 -17.9 -124.3 (60.6) 03 (0.7) -96.4 (49.7) 3957.2 4114.8
halfcheetah-medium 12135.0 30449 43277 4196.4 3276.4 (1500.7)  4319.6 (243.7) 4277.6 (564.9)  4987.5 54738
halfcheetah-medium-replay 12135.0 22982 48284 44921 4035.7(365.4)  4812.0 (148.7) 3854.8 (966.3)  6700.6 5640.6
halfcheetah-medium-expert 12135.0 8054.4 12765.4 41694 633.2(2152.9) 10535.6(3334.9) 9470.3(4178.9) 71847 7750.8

e BCis able to approach or outperform the performance of the behavior policy on the
datasets generated from a single policy (random/medium), but still remains a gap
between the optimal behavior policy (Best 1%)

e COIL achieves the performance of the optimal behavior policy on most datasets,
and doing so will allow COIL to beat or compete with the state-of-the-art results

o For model-based algorithm like MOPO, it behaves well on the medium-replay
datasets due to the sufficient data to learn a good environment model; but it can
hardly outperform SoTA model-free results on other datasets
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Ablation Study
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Compared with Naive Strategies

e Return-ordered BC (RBC): picks Ntrajectories with the lowest returns for each
curriculum to perform behavioral cloning, and then removes them from the dataset.

o Buffer-shrinking BC (BBC): begin its training with the entire dataset in the buffer;
after a fixed number of gradient steps, it shrinks the buffer by discarding p% of
trajectories with the lowest returns

2800 1 9600 1
2400 1 8400 -
E 2000 g 72001 /
2 1600+ i
2 2 4800 A
& 1200 £ 36001
Z 800 Z 2400
400 - 1200
01 e 0] : : : 0 i i i
0 6000 12000 18000 24000 0 50000 100000150000200000 0 100000200000300000400000
Gradient Steps Gradient Steps Gradient Steps
(a) Hopper-final. (b) Walker2d-final. (c) HalfCheetah-final.

Figure 8: Comparison of training curves between COIL and Return-ordered BC (R BC) and Buffer-shrinking
BC (B BC) on final datasets with the same batch size. Different strategies terminate with different gradient steps.
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Conclusion

e Analyze the quantity-quality dilemma of behavior cloning (BC) from both an
experimental and a theoretical point of view, and propose COIL

o Experiments show good properties of COIL with competitive evaluation results
against SOTA offline RL algorithm

e COIL can stops automatically with a good policy, which make it easier to be applied
in real-world applications without online evaluation to find the stop point as the
previous algorithms do

e The best performence of COIL is limited into the performance of the dataset
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— The End -

thanks
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