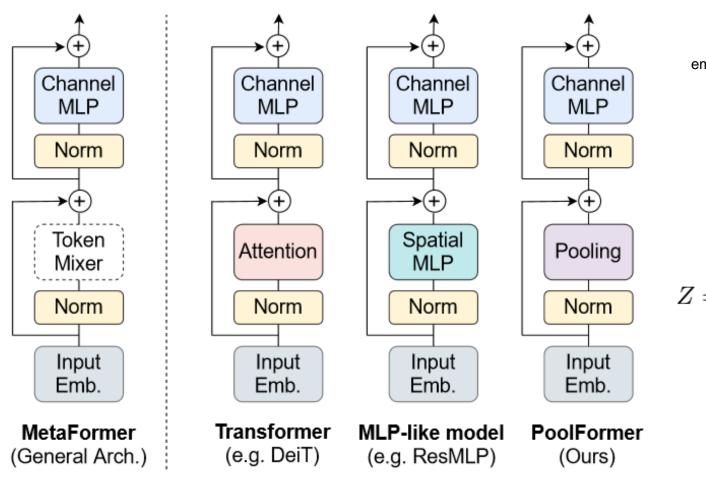
MetaFormer is Actually What You Need for Vision

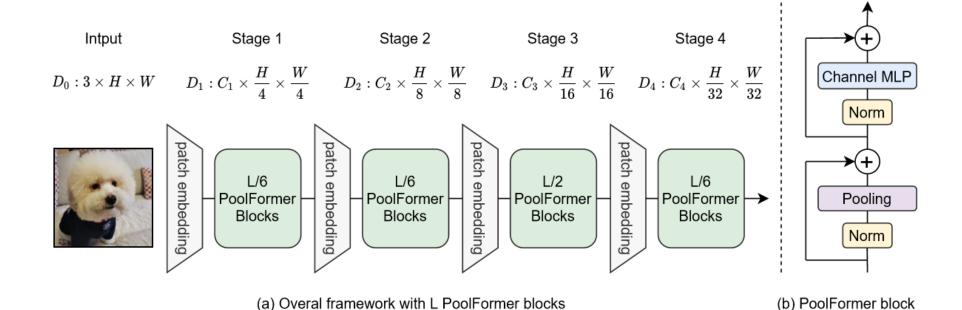

Weihao Yu Mi Luo Pan Zhou Chenyang Si Yichen Zhou, Xinchao Wang Jiashi Feng Shuicheng Yan Sea Al Lab National University of Singapore

Outline

analysis

- > attention-based token mixer module contributes most to their competence.
- ➤ They can be replaced by spatial MLPs and the resulted models still perform quite well.
- ➤ replace the attention module in transformers with an embarrassingly simple spatial pooling operator to conduct only the most basic token mixing.
- MetaFormer
- Experiments

MetaFormer

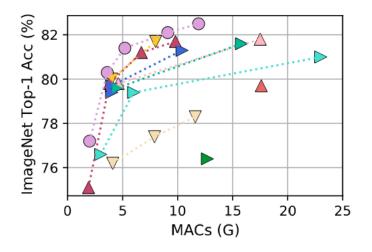

embedding dimension embedding tokens $X = \text{InputEmb}(I), \ X \in \mathbb{R}^{N \times C}$ sub-block 1 Y = TokenMixer(Norm(X)) + X,sub-block 2 $Z = \widehat{\sigma}(\text{Norm}(Y)W_1)W_2 + Y,$ **Activation Function** $W_1 \in \mathbb{R}^{C \times rC}$ $W_2 \in \mathbb{R}^{rC \times C}$

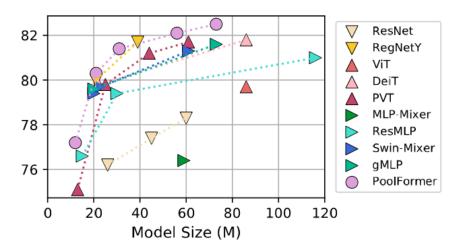
learnable parameters with MLP expansion ratio r

PoolFormer

Pooling operator
$$T'_{:,i,j}=rac{1}{K imes K}\sum_{p,q=1}^{K}T_{:,i+p-rac{K+1}{2},i+q-rac{K+1}{2}}-T_{:,i,j},$$

Algorithm 1 Pooling for PoolFormer, PyTorch-like Code


PoolFormer


Stage	# Tokens	Layer Specification		PoolFormer					
Stage				S12	S24	S36	M36	M48	
		Patch	Patch Size	7×7 , stride 4					
		Embedding	Embed. Dim.		64	9	96		
1	$\frac{H}{4} \times \frac{W}{4}$	PoolFormer	Pooling Size	3×3 , stride 1					
1	4 ^ 4	Block	MLP Ratio	4					
		DIOCK	# Block	2	4	6	6	8	
		Patch	Patch Size		3 >	< 3, stric	de 2		
	$\frac{H}{8} \times \frac{W}{8}$	Embedding	Embed. Dim.	128			192		
2		PoolFormer	Pooling Size	3×3 , stride 1					
_		Block	MLP Ratio	4					
			# Block	2	4	6	6	8	
	$\frac{H}{16} \times \frac{W}{16}$	Patch	Patch Size	3×3 , stride 2					
		Embedding	Embed. Dim.	320 384					
3		PoolFormer Block	Pooling Size	3×3 , stride 1					
			MLP Ratio	4					
			# Block	6	12	18	18	24	
	$\frac{H}{32} \times \frac{W}{32}$	Patch		Patch Size	3×3 , stride 2				
		Embedding	Embed. Dim.	512 768					
4		PoolFormer Block	Pooling Size	3×3 , stride 1					
7			MLP Ratio	4					
			# Block	2	4	6	6	8	
	Parameters (M)			11.9	21.4	30.8	56.1	73.4	
	MACs (G)			2.0	3.6	5.2	9.1	11.9	

ImageNet Classification

Dataset: ImageNet-1k

General Arch.	Token Mixer	Token Mixer Outcome Model		Params (M)	MACs (G)	Top-1 (%
		▼ ResNet-50 [22]	224	26	4.1	76.2
Convolutional		ResNet-101 [22]	224	45	7.9	77.4
Neural Netowrks	_	▼ ResNet-152 [22]	224	60	11.6	78.3
neurai netowiks		V RegNetY-4GF [39]	224	21	4.0	80.0
		▼ RegNetY-8GF [39]	224	39	8.0	81.7
		▲ ViT-B/16* [16]	224	86	17.6	79.7
		▲ ViT-L/16* [16]	224	307	63.6	76.1
		▲ DeiT-S [47]	224	22	4.6	79.8
	Attention	▲ DeiT-B [47]	224	86	17.5	81.8
	Attention	▲ PVT-Tiny [51]	224	13	1.9	75.1
		▲ PVT-Small [51]	224	25	3.8	79.8
		▲ PVT-Medium [51]	224	44	6.7	81.2
		▲ PVT-Large [51]	224	61	9.8	81.7
		MLP-Mixer-B/16 [45]	224	59	12.7	76.4
		ResMLP-S12 [46]	224	15	3.0	76.6
MetaFormer		ResMLP-S24 [46]	224	30	6.0	79.4
Wictar Office		ResMLP-B24 [46]	224	116	23.0	81.0
	Spatial MLP	Swin-Mixer-T/D24 [34]	256	20	4.0	79.4
		Swin-Mixer-T/D6 [34]	256	23	4.0	79.7
		➤ Swin-Mixer-B/D24 [34]	224	61	10.4	81.3
		▶ gMLP-S [33]	224	20	4.5	79.6
		▶ gMLP-B [33]	224	73	15.8	81.6
		PoolFormer-S12	224	12	2.0	77.2
		PoolFormer-S24	224	21	3.6	80.3
	Pooling [PoolFormer-S36	224	31	5.2	81.4
		PoolFormer-M36	224	56	9.1	82.1
		PoolFormer-M48	224	73	11.9	82.5

Object Detection and instance Segmentation

Dataset:	COCO	Object Detection
----------	------	------------------

Model	Params (M)	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
V ResNet-18 [22] PoolFormer-S12	21.3	31.8	49.6	33.6	16.3	34.3	43.2
	21.7	36.2	56.2	38.2	20.8	39.1	48.0
ResNet-50 [22]PoolFormer-S24	37.7	36.3	55.3	38.6	19.3	40.0	48.8
	31.1	38.9	59.7	41.3	23.3	42.1	51.8
ResNet-101 [22] PoolFormer-S36	56.7 40.6	38.5 39.5	57.8 60.5	41.2 41.8	21.4 22.5	42.6 42.9	51.1 52.4

Instance Segmentation

Model	Params (M)	AP ^b	$\mathrm{AP^{b}_{50}}$	$\mathrm{AP^{b}_{75}}$	AP ^m	$\mathrm{AP_{50}^m}$	$\mathrm{AP^m_{75}}$
ResNet-18 [22] PoolFormer-S12	31.2	34.0	54.0	36.7	31.2	51.0	32.7
	31.6	37.3	59.0	40.1	34.6	55.8	36.9
ResNet-50 [22] PoolFormer-S24	44.2	38.0	58.6	41.4	34.4	55.1	36.7
	41.0	40.1	62.2	43.4	37.0	59.1	39.6
ResNet-101 [22] PoolFormer-S36	63.2	40.4	61.1	44.2	36.4	57.7	38.8
	50.5	41.0	63.1	44.8	37.7	60.1	40.0

Dataset: ADE20K

Sementic Segmentation

Model	Params (M)	mIoU (%)
▼ ResNet-18 [22]	15.5	32.9
▲PVT-Tiny [51]	17.0	35.7
PoolFormer-S12	15.7	37.2
▼ ResNet-50 [22]	28.5	36.7
▲PVT-Small [51]	28.2	39.8
PoolFormer-S24	23.2	40.3
▼ ResNet-101 [22]	47.5	38.8
▼ResNeXt-101-32x4d [56]	47.1	39.7
▲PVT-Medium [51]	48.0	41.6
PoolFormer-S36	34.6	42.0
▲PVT-Large [51]	65.1	42.1
PoolFormer-M36	59.8	42.4
VResNeXt-101-64x4d [56]	86.4	40.2
PoolFormer-M48	77.1	42.7

Ablation Studies

Ablation	Variant	Params (M)	MACs (G)	Top-1 (%)
Baseline	None (PoolFormer-S12)	11.9	2.0	77.2
Polling	Pooling \rightarrow Identity mapping Pooling size $3 \rightarrow 5$ Pooling size $3 \rightarrow 7$ Pooling size $3 \rightarrow 9$	11.9 11.9 11.9 11.9	2.0 2.0 2.0 2.0	74.3 77.2 77.1 76.8
Normalization	Group Normalization [55] → Layer Normalization [1] Group Normalization [55] → Batch Normalization [26]	11.9 11.9	2.0 2.0	76.5 76.4
Activation		11.9 11.9	2.0 2.0	76.4 77.2
Hybrid Stages		14.0 16.5 11.9 12.2	2.1 2.7 2.0 2.1	78.3 81.0 77.5 77.9