

Model-Contrastive Federated Learning

CVPR 2021

FEDMIX: APPROXIMATION OF MIXUP UNDER MEAN AUGMENTED FEDERATED LEARNING

ICLR 2021

FEDERATED SEMI-SUPERVISED LEARNING WITH INTER-CLIENT CONSISTENCY & DISJOINT LEARNING

ICLR 2021

Federated Learning

Example: Two regional banks may have very different user groups from their respective regions, and the intersection set of their users is very small. However, their business is very similar, so the feature spaces are the same.

http://tangyp.cn/seminar_hsj/2021-spring/20210602-tangyp.pdf

Federated Learning

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize w_0 for each round t = 1, 2, ... do $m \leftarrow \max(C \cdot K, 1)$ $S_t \leftarrow (\text{random set of } m \text{ clients})$ for each client $k \in S_t$ in parallel do $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$ $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

FedAvg: One of the standard and most widely used algorithm for federated learning.

Model-Contrastive Federated Learning

Qinbin Li National University of Singapore

qinbin@comp.nus.edu.sg

Bingsheng He National University of Singapore

hebs@comp.nus.edu.sg

Dawn Song UC Berkeley

dawnsong@berkeley.edu

CVPR 2021

Motivation

A key challenge in federated learning is to handle the **heterogeneity of local data distribution** across parties.

Existing methods failed to achieve high performance in **image datasets** with **deep learning models**.

MOON (model-contrastive learning) is proposed.

MOON is based on an intuitive idea: the model trained on the whole dataset is able to extract a better feature representation than the model trained on a skewed subset.

MOON:

- Decreasing the distance between the representation learned by the local model and the representation learned by the global model;
- ✓ Increasing the distance between the representation learned by the local model and the representation learned by the previous local model.

$$\Rightarrow \quad l_{i,j} = -\log \frac{\exp(\operatorname{sim}(x_i, x_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{I}_{[k \neq i]} \exp(\operatorname{sim}(x_i, x_k)/\tau)}$$

Algorithm 1: The MOON framework

Input: number of communication rounds T, number of parties N, number of local epochs E, temperature τ , learning rate η , hyper-parameter μ **Output:** The final model w^T

1 Server executes:

2 initialize w^0

3 for
$$t = 0, 1, ..., T - 1$$
 do
4 for $i = 1, 2, ..., N$ in parallel do
5 left send the global model w^t to P_i
6 $w_i^t \leftarrow \text{PartyLocalTraining}(i, w^t)$
7 $w^{t+1} \leftarrow \sum_{k=1}^N \frac{|\mathcal{D}^i|}{|\mathcal{D}|} w_k^t$
8 return w^T

9 **PartyLocalTraining** (i, w^t) : 10 $w_i^t \leftarrow w^t$ 11 for epoch i = 1, 2, ..., E do for each batch $\mathbf{b} = \{x, y\}$ of \mathcal{D}^i do 12 $\ell_{sup} \leftarrow CrossEntropyLoss(F_{w_i^t}(x), y)$ 13 $z \leftarrow R_{w_i^t}(x)$ 14 $z_{glob} \leftarrow R_{w^t}(x)$ 15 $z_{prev} \leftarrow R_{w_i^{t-1}}(x)$ 16 17 $\ell_{con} \leftarrow$ $-\log \frac{\exp(\sin(z, z_{glob})/\tau)}{\exp(\sin(z, z_{glob})/\tau) + \exp(\sin(z, z_{prev})/\tau)}$ $\begin{aligned} \ell &\leftarrow \ell_{sup} + \mu \ell_{con} \\ w_i^t &\leftarrow w_i^t - \eta \nabla \ell \end{aligned}$ 18 19

20 return w_i^t to server

Figure 5. The data distribution of each party using non-IID data partition. The color bar denotes the number of data samples. Each rectangle represents the number of data samples of a specific class in a party.

Table 1. The top-1 accuracy of MOON and the other baselines on test datasets. For MOON, FedAvg, FedProx, and SCAFFOLD, we run three trials and report the mean and standard derivation. For SOLO, we report the mean and standard derivation among all parties.

Method	CIFAR-10	CIFAR-100	Tiny-Imagenet
MOON	69.1% ±0.4%	67.5% ±0.4%	25.1% ±0.1%
FedAvg	$66.3\% \pm 0.5\%$	$64.5\% \pm 0.4\%$	23.0%±0.1%
FedProx	$66.9\% \pm 0.2\%$	$64.6\% \pm 0.2\%$	$23.2\% \pm 0.2\%$
SCAFFOLD	$66.6\% \pm 0.2\%$	$52.5\% \pm 0.3\%$	$16.0\% \pm 0.2\%$
SOLO	$46.3\% \pm 5.1\%$	$22.3\%{\pm}1.0\%$	$8.6\%{\pm}0.4\%$

Experiment

Figure 6. The top-1 test accuracy in different number of communication rounds. For FedProx, we report both the accuracy with best μ and the accuracy with $\mu = 1$.

Table 2. The number of rounds of different approaches to achieve the same accuracy as running FedAvg for 100 rounds (CIFAR-10/100) or 20 rounds (Tiny-Imagenet). The speedup of an approach is computed against FedAvg.

Method	CIFA	CIFAR-10		CIFAR-100		Tiny-Imagenet	
wictild	#rounds	speedup	#rounds	speedup	#rounds	speedup	
FedAvg	100	$1 \times$	100	$1 \times$	20	1×	
FedProx	52	$1.9 \times$	75	$1.3 \times$	17	$1.2 \times$	
SCAFFOLD	80	$1.3 \times$		<1×		<1×	
MOON	27	3.7 ×	43	2.3 ×	11	1.8 ×	

Experiment

Figure 7. The top-1 test accuracy with different number of local epochs. For MOON and FedProx, μ is set to the best μ from Section 4.2 for all numbers of local epochs. The accuracy of SCAFFOLD is quite bad when number of local epochs is set to 1 (45.3% on CIFAR10, 20.4% on CIFAR-100, 2.6% on Tiny-Imagenet). The accuracy of FedProx on Tiny-Imagenet with one local epoch is 1.2%.

Experiment

Table 3. The accuracy with 50 parties and 100 parties (sample fraction=0.2) on CIFAR-100.

Method	#parti	es=50	#parties=100		
Withiliti	100 rounds	200 rounds	250 rounds	500 rounds	
MOON (μ =1)	54.7%	58.8%	54.5%	58.2%	
MOON (μ=10)	58.2%	63.2%	56.9%	61.8%	
FedAvg	51.9%	56.4%	51.0%	55.0%	
FedProx	52.7%	56.6%	51.3%	54.6%	
SCAFFOLD	35.8%	44.9%	37.4%	44.5%	
SOLO	10%±0.9%		$7.3\%{\pm}0.6\%$		

Table 4. The test accuracy with β from {0.1, 0.5, 5}.

Method	$\beta = 0.1$	$\beta = 0.5$	$\beta = 5$
MOON	64.0%	67.5%	68.0%
FedAvg	62.5%	64.5%	65.7%
FedProx	62.9%	64.6%	64.9%
SCAFFOLD	47.3%	52.5%	55.0%
SOLO	15.9%±1.5%	22.3%±1%	26.6%±1.4%

Table 5. The top-1 accuracy with different kinds of loss for the second term of local objective. We tune μ from {0.001, 0.01, 0.1, 1, 5, 10} for the ℓ_2 norm approach and report the best accuracy.

second term	CIFAR-10	CIFAR-100	Tiny-Imagenet
none (FedAvg)	66.3%	64.5%	23.0%
$\ell_2 \text{ norm}$	65.8%	66.9%	24.0%
MOON	69.1%	67.5%	25.1%

$$\ell = \ell_{sup} + \mu \left\| z - z_{glob} \right\|_2$$

FEDMIX: APPROXIMATION OF MIXUP UNDER MEAN AUGMENTED FEDERATED LEARNING

Tehrim Yoon & Sumin Shin & Sung Ju Hwang & Eunho Yang

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, South Korea
{tryoon93, sym807, sjhwang82, eunhoy}@kaist.ac.kr

ICLR 2021

Mix-Up:

• Given two natural images x_i and x_j , mix-up generates multiple synthetic images by a convex combination of the two with different coefficients,

$$\hat{x}_{ij}(\lambda) = \lambda x_i + (1 - \lambda) x_j,$$

• where the coefficient $\lambda \in [0, 1]$. Note that this notation also includes the original unlabeled data x_i and x_j when $\lambda = 1$ and $\lambda = 0$, respectively.

Algorithm 1: Mean Augmented Federated Learning (MAFL) Input: $\mathbb{D}_k = \{X_k, Y_k\}$ for $k = 1, \dots, N$ M_k : number of data instances used for computing average \bar{x}, \bar{y} Initialize w_0 for global server for t = 0, ..., T - 1 do for client k with updated local data do Split local data into M_k sized batches Compute \bar{x}, \bar{y} for each batch Send all \bar{x}, \bar{y} to server end $\mathbb{S}_t \leftarrow K$ clients selected at random Send w_t to clients $k \in \mathbb{S}_t$ if updated then Aggregate all \bar{x}, \bar{y} to X_a, Y_a Send X_q, Y_q to clients $k \in \mathbb{S}_t$ end for $k \in \mathbb{S}_t$ do $w_{t+1}^k \leftarrow LocalUpdate(k, w_t; X_g, Y_g)$ end $w_{t+1} \leftarrow \frac{1}{K} \sum_{k \in \mathbb{S}_t} p_k w_{t+1}^k$ end

Proposition 1 Consider the loss function of the global Mixup modulo the privacy issues,

$$\ell_{\text{GlobalMixup}}(f(\tilde{x}), \tilde{y}) = \ell \Big(f\big((1-\lambda)x_i + \lambda x_j\big), (1-\lambda)y_i + \lambda y_j \Big)$$
(3)

for cross-entropy loss ℓ^1 . Suppose that Eq. (3) is approximated by applying Taylor series around the place where $\lambda \ll 1$. Then, if we ignore the second order term (i.e., $\mathcal{O}(\lambda^2)$), we obtain the following approximated loss:

$$(1-\lambda)\ell\Big(f\big((1-\lambda)x_i\big), y_i\Big) + \lambda\ell\Big(f\big((1-\lambda)x_i\big), y_j\Big) + \lambda\frac{\partial\ell}{\partial x} \cdot x_j \tag{4}$$

where the derivative $\frac{\partial \ell}{\partial x}$ is evaluated at $x = (1 - \lambda)x_i$ and $y = y_i$.

$$(1-\lambda)\ell\Big(f\big((1-\lambda)\boldsymbol{x}_i\big),y_i\Big) + (1-\lambda) \times \frac{\partial\ell}{\partial\boldsymbol{x}}\Big|_{(1-\lambda)\boldsymbol{x}_i,y_i} \cdot (\lambda\boldsymbol{x}_j) \\ +\lambda\ell\Big(f\big((1-\lambda)\boldsymbol{x}_i\big),y_j\Big) + \lambda \times \frac{\partial\ell}{\partial\boldsymbol{x}}\Big|_{(1-\lambda)\boldsymbol{x}_i,y_j} \cdot (\lambda\boldsymbol{x}_j).$$

Algorithm 2: FedMix $LocalUpdate(k, w_t; X_q, Y_q)$ under MAFL (Algorithm 1): $w \leftarrow w_t$ for e = 0, ..., E - 1 do Split \mathbb{D}_k into batches of size B for $batch(\mathbf{X}, \mathbf{Y})$ do Select an entry x_q, y_q from X_a, Y_a $\ell_1 =$ $(1-\lambda)\ell(f((1-\lambda)X; \boldsymbol{w}), \boldsymbol{Y})$ $\ell_2 = \lambda \ell (f((1-\lambda)\boldsymbol{X}; \boldsymbol{w}), \boldsymbol{y}_a)$ $\ell_3 = \lambda \frac{\partial \ell_1}{\partial x} \cdot x_g$ (derivative calculated at $\boldsymbol{x} = (1 - \lambda)\boldsymbol{x}_i$ and $\boldsymbol{y} = y_i$ for each of x_i, y_i in X, Y) $\ell = \ell_1 + \ell_2 + \ell_3$ $w \leftarrow w - \eta_{t+1} \nabla \ell$ end end return w

Figure 2: Learning curves for various algorithms on benchmark datasets. Learning curves correspond to results in Table 1. (For simplicity, we only show key algorithms to compare.)

Experiment

Table 1: Test accuracy after (target rounds) and number of rounds to reach (target test accuracy) on various datasets. Algorithms in conjunction with FedProx are compared separately (bottom). MAFL-based algorithms are marked in bold.

Algorithm	FEMNIST		CIFA	CIFAR10		CIFAR100	
	test acc. (200)	rounds (80%)	test acc. (500)	rounds (70%)	test acc. (500)	rounds (40%)	
Global Mixup	88.2	8	88.2	85	61.4	54	
FedAvg	85.3	26	73.8	283	50.4	101	
LocalMix	82.8	28	73.0	267	54.8	91	
NaiveMix	85.9	23	77.4	198	53.8	85	
FedMix	86.5	18	81.2	162	56.7	34	
FedProx	84.6	29	77.3	266	51.2	79	
FedProx + LocalMix	84.1	39	74.1	314	54.0	90	
FedProx + NaiveMix	85.7	37	76.7	230	53.1	74	
FedProx + FedMix	86.0	32	78.9	223	54.5	63	

Table 2: Test accuracy after 50 rounds on Shakespeare dataset.

Algorithm	Global Mixup	FedAvg	FedProx	LocalMix	NaiveMix	FedMix
Test Acc. (%)	54.4	54.7	54.4	53.7	56.9	56.9

Experiment

Table 3: Test accuracy on CIFAR10, under varying number of clients (N). Number of samples per client is kept constant.

# of Clients (N)	20	40	60
Global Mixup	86.3	89.2	88.2
FedAvg	65.8	73.4	73.8
LocalMix	46.9	71.4	73.0
NaiveMix	62.2	75.1	77.4
FedMix	68.5	76.4	81.2

Table 5: Test accuracy on CIFAR10, under varying mixup ratio λ .

λ	0.05	0.1	0.2	0.5
Global Mixup	79.4	80.4	81.1	63.6
FedMix	81.2	80.5	77.7	67.1

Figure 3: Performance of MAFL-based algorithms for various M_k values (left), and samples of averaged images from EMNIST/CIFAR10 for various M_k values (right).

Experiment

Table 6: Test accuracy after 500 rounds on CIFAR10, under varying number of classes per client.

		——clas	s/client—	
Algorithm	2	3	5	10 (iid)
Global Mixup	88.2	90.7	90.9	91.4
FedAvg	73.8	84.2	86.8	89.3
Localmix	73	83.3	86.4	89.1
NaiveMix	77.4	84.5	87.7	89.4
FedMix	81.2	85.1	87.9	89.1

FEDERATED SEMI-SUPERVISED LEARNING WITH INTER-CLIENT CONSISTENCY & DISJOINT LEARNING

Wonyong Jeong¹, Jaehong Yoon², Eunho Yang^{1,3}, and Sung Ju Hwang^{1,3} Graduate School of AI¹, KAIST, Seoul, South Korea School of Computing², KAIST, Daejeon, South Korea AITRICS ³, Seoul, South Korea {wyjeong, jaehong.yoon, eunhoy, sjhwang82}@kaist.ac.kr

ICLR 2021

Figure 2: **Illustration of Inter-Client Consistency Loss.** We illustrate each step of our inter-client consistency regularization process performed at local client. We provide the detailed explanations in Section 3.1.

$$\begin{split} \Phi(\cdot) &= \text{CrossEntropy}(\hat{\mathbf{y}}, p_{\boldsymbol{\theta}^{l}}(\mathbf{y}|\boldsymbol{\pi}(\mathbf{u}))) + \frac{1}{H} \sum_{j=1}^{H} \text{KL}[p_{\boldsymbol{\theta}^{h_{j}}}^{*}(\mathbf{y}|\mathbf{u})||p_{\boldsymbol{\theta}^{l}}(\mathbf{y}|\mathbf{u})] \\ \hat{\mathbf{y}} &= \text{Max}(\mathbb{1}(p_{\boldsymbol{\theta}^{l}}^{*}(\mathbf{y}|\mathbf{u})) + \sum_{j=1}^{H} \mathbb{1}(p_{\boldsymbol{\theta}^{h_{j}}}^{*}(\mathbf{y}|\mathbf{u}))) \end{split}$$

Decomposing model parameters θ into two variables, σ for supervised learning and φ for unsupervised learning, such that $\theta = \sigma + \varphi$.

Stage 1: Performing standard supervised learning on σ , while keeping φ fixed.

minimize $\mathcal{L}_{s}(\sigma) = \lambda_{s} \text{CrossEntropy}(\mathbf{y}, p_{\sigma + \psi^{*}}(\mathbf{y}|\mathbf{x}))$

Stage 2: Performing unsupervised learning conversely on φ , while keeping σ fixed.

minimize
$$\mathcal{L}_u(\psi) = \lambda_{\text{ICCS}} \Phi_{\sigma^* + \psi}(\cdot) + \lambda_{L_2} ||\sigma^* - \psi||_2^2 + \lambda_{L_1} ||\psi||_1$$

Algorithm 1 Labels-at-Client Scenario

1: RunServer()

- 2: initialize σ^0 and ψ^0
- 3: for each round r = 1, 2, ..., R do
- 4: $\mathcal{L}^r \leftarrow (\text{select random } A \text{ clients from } \mathcal{L})$
- 5: for each client $l_a^r \in \mathcal{L}^r$ in parallel do
- 6: $\psi_{1:H}^r \leftarrow \text{GetNearestNeighbors}(\psi^r)$
- 7: $\sigma_a^r, \psi_a^r \leftarrow \text{RunClient}(\sigma^r, \psi^r, \psi_{1:H}^r)$
- 8: EmbedLocalModel(σ_a^r, ψ_a^r)
- 9: end for

10:
$$\sigma^{r+1} \leftarrow \frac{1}{A} \sum_{a=1}^{A} (\sigma_{l_a}^r)$$

11: $\psi^{r+1} \leftarrow \frac{1}{A} \sum_{a=1}^{A} (\psi_{l_a}^r)$

12: end for

13: **RunClient**($\sigma, \psi, \psi_{1:H}$) 14: $\theta_{l_a} \leftarrow \sigma + \psi, \theta_{h_{1:H}} \leftarrow \sigma + \psi_{1:H}$ 15: **for** each local epoch *e* from 1 to E_L **do** 16: **for** minibatch $s \in S_{l_a}$ and $u \in U_{l_a}$ **do** 17: $\theta_{\sigma+\psi^*} \leftarrow \theta_{\sigma+\psi^*} - \eta \nabla \ell_s(\theta_{\sigma+\psi^*}; \theta_{h_{1:H}}, s)$ 18: $\theta_{\sigma^*+\psi} \leftarrow \theta_{\sigma^*+\psi} - \eta \nabla \ell_u(\theta_{\sigma^*+\psi}; \theta_{h_{1:H}}, u)$ 19: **end for** 20: **end for**

Figure 3: Illustrative Running Example of Labelsat-Client Scenario We describe training and communication procedure between local and global model under Labels-at-Client scenario corresponding to the Algorithm 1. More details are described in Section 4.

Low Similarity

 ψ^{h_2}

Learn σ^{G} **High Similarity** Algorithm 2 Labels-at-Server Scenario Aggregation 1: **RunServer()** 2: initialize σ^0, ψ^0 3: for each round r = 1, 2, ..., R do Global Model Labeled Data 4: for each server epoch e from 1 to E_G do σ^{G} ψ^{h_1} 5: ψ^{l_a} for minibatch $s \in S_G$ do $\theta_{\sigma+\psi^*} \leftarrow \theta_{\sigma+\psi^*} - \eta \nabla \ell_s(\theta_{\sigma+\psi^*};s)$ 6: 7: end for 8: Learn ψ^{l_a} with Helper 1, Helper 2 end for 9: $\mathcal{L}^r \leftarrow (\text{select random } A \text{ clients from } \mathcal{L})$ 10: for each client $l_a^r \in \mathcal{L}^r$ in parallel do $\psi_{1:H}^r \leftarrow \text{GetNearestNeighbors}(\psi^r)$ 11: $\psi_a^r \leftarrow \text{RunClient}(\sigma^{r+1}, \psi^r, \psi_{1:H}^r)$ 0 12: **Unlabeled Data** EmbedLocalModel(σ^{r+1}, ψ^r_a) 13: Local Model l_a 14: end for $\psi^{r+1} \leftarrow \frac{1}{A} \sum_{a=1}^{A} (\psi_{l_a}^r)$ 15: Figure 4: Illustrative Running Example of Labels-16: **end for** at-Server Scenario We depict learning and transmit-17: **RunClient**($\sigma, \psi, \psi_{1:H}$) ting procedure between a client and the global server 18: $\theta_l \leftarrow \sigma^* + \psi, \theta_{h_{1:H}} \leftarrow \sigma^* + \psi_{1:H}$ under Labels-at-Server scenario corresponding to the 19: for each local epoch e from 1 to E_L do Algorithm 2. Note that, in labels-at-server scenario, the 20: for minibatch $u \in \mathcal{U}_{l_a}$ do labeled data is only available at the server, and thus 21: $\theta_{\sigma^* + \psi} \leftarrow \theta_{\sigma^* + \psi} - \eta \nabla \ell_u (\theta_{\sigma^* + \psi}; \theta_{h_{1:H}}, u)$ global model at the server learns on labeled data, while 22: end for local models at clients learn on only unlabeled data. 23: end for Further details are explained in Section 5.

Table 1: Performance Comparison on Batch-IID & NonIID Tasks We use 100 clients (F=0.05) for 200 rounds. We measure global model accuracy and averaged communication costs. Note that the SL (Supervised Learning) models learn on both S and U with full labels, and are utilized as the upper bounds for each experiment.

CIFAR-10, Batch-IID Task with 100 Clients (K =100, F =0.05, H =2)								
	Labels-at-Client Scenario			Labels-at-Server Scenario				
Methods	Acc.(%)	S2C Cost C2S Cost Acc.(%) S2C		S2C Cost	C2S Cost			
FedAvg-SL	58.60 ± 0.42	100 %	100 %	52.45 ± 0.23	100 %	100 %		
FedProx-SL	59.30 ± 0.31	100 %	100 %	49.11 ± 0.38	100 %	$100 \ \%$		
FedAvg-UDA	46.35 ± 0.29	-100%	-100%	$\overline{24.81 \pm 0.73}$	$\overline{100} \ \overline{\%}$	$\overline{100} \ \overline{\%}$		
FedProx-UDA	47.45 ± 0.21	$100 \ \%$	100 %	19.91 ± 0.31	$100 \ \%$	$100 \ \%$		
FedAvg-FixMatch	47.01 ± 0.43	100 %	100 %	11.95 ± 0.60	100 %	$100 \ \%$		
FedProx-FixMatch	47.20 ± 0.12	100 %	100 %	25.61 ± 0.32	100 %	$100 \ \%$		
FedMatch (Ours)	$\overline{52.13} \pm 0.34$	7 9 <i>~</i> %	<u> 46 % </u>	$\overline{44.95} \pm 0.49$	45 %	-22%		
CIFAR-10, Batch-N	onIID Task w	ith 100 Clien	ts (K=100, H	7=0.05, H=2)				
FedAvg-SL	55.15 ± 0.21	100 %	100 %	51.50 ± 0.51	100 %	100 %		
FedProx-SL	57.75 ± 0.15	$100 \ \%$	100 %	49.31 ± 0.18	100 %	$100 \ \%$		
FedAvg-UDA	44.35 ± 0.39	-100%	100 %	$\overline{27.61 \pm 0.71}$	$\overline{100}$ $\overline{\%}$	$\overline{100} \ \overline{\%} \ \overline{-}$		
FedProx-UDA	46.31 ± 0.63	100 %	100 %	26.01 ± 0.78	$100 \ \%$	$100 \ \%$		
FedAvg-FixMatch	46.20 ± 0.52	100 %	100 %	09.45 ± 0.34	100 %	$100 \ \%$		
FedProx-FixMatch	45.55 ± 0.63	100 %	$100 \ \%$	09.21 ± 0.24	100 %	$100 \ \%$		
FedMatch (Ours)	$\overline{52.25} \pm 0.81$	85 %	<u>4</u> 9 %	$\textbf{44.17} \pm \textbf{0.19}$	42^{-} %	$\overline{20\%}$		

THANKS