

Conference on Computer Vision and Pattern Recognition

Two Articles about Loss function for long-tail distribution

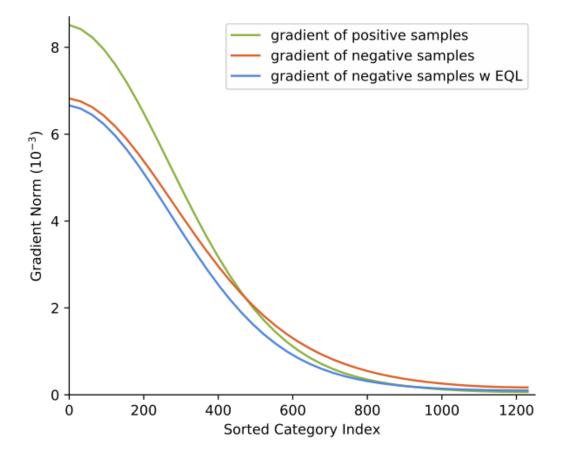
Equalization Loss for Long-Tailed Object Recognition

Jingru Tan¹ Changbao Wang² Buyu Li³ Quanquan Li² Wanli Ouyang⁴ Changqing Yin¹ Junjie Yan² ¹Tongji University ²SenseTime Research ³The Chinese University of Hong Kong ⁴The University of Sydney, SenseTime Computer Vision Research Group, Australia {tjrl20, yinchangqing}@tongji.edu.cn, {wangchangbao,liquanquan,yanjunjie}@sensetime.com byli@ee.cuhk.edu.hk, wanli.ouyang@sydney.edu.au

CVPR 2020

The problem of the long-tailed distribution of the categories is a great challenge to the learning of object detection models, especially for the rare categories. So the rare categories can be easily overwhelmed by the majority categories during training and are inclined to be predicted as negatives. Thus the conventional object detectors trained on such an extremely unbalanced dataset suffer a great decline.

Motivation



Each positive sample of one category can be seen as a negative sample for other categories, making the tail categories receive more discouraging gradients.

Figure 1: The overall gradient analysis on positive and negative samples. We collect the average L_2 norm of gradient of weights in the last classifier layer. Categories' indices are sorted by their instance counts. Note that for one category, proposals of all the other categories and the background are negative samples for it.

Softmax cross-entropy loss

$$L_{SCE} = -\sum_{j=1}^{C} y_j \log(p_j)$$
(1) $y_j = \begin{cases} 1 & \text{if } j = c \\ 0 & \text{otherwise} \end{cases}$ (2)

(3)

sigmoid cross-entropy loss

$$L_{BCE} = -\sum_{j}^{C} \log(\hat{p_j})$$

$$\hat{p_j} = \begin{cases} p_j & \text{if } y_j = 1\\ 1 - p_j & \text{otherwise} \end{cases}$$
(4)

The derivative of the L_{BCE} and L_{SCE} with respect to network's output z in sigmoid cross entropy

$$\frac{\partial L_{cls}}{\partial z_j} = \begin{cases} p_j - 1 & \text{if } y_j = 1\\ p_j & \text{otherwise} \end{cases}$$
(5)

equalization loss (EQL)

Equalization loss

$$L_{EQL} = -\sum_{j=1}^{C} w_j log(\hat{p_j})$$

(6)

(8)

 $w_j = 1 - E(r)T_{\lambda}(f_j)(1 - y_j)$ (7)

Tail Ratio

E(r) outputs 1 when r is a foreground region proposal and 0 when it belongs to background

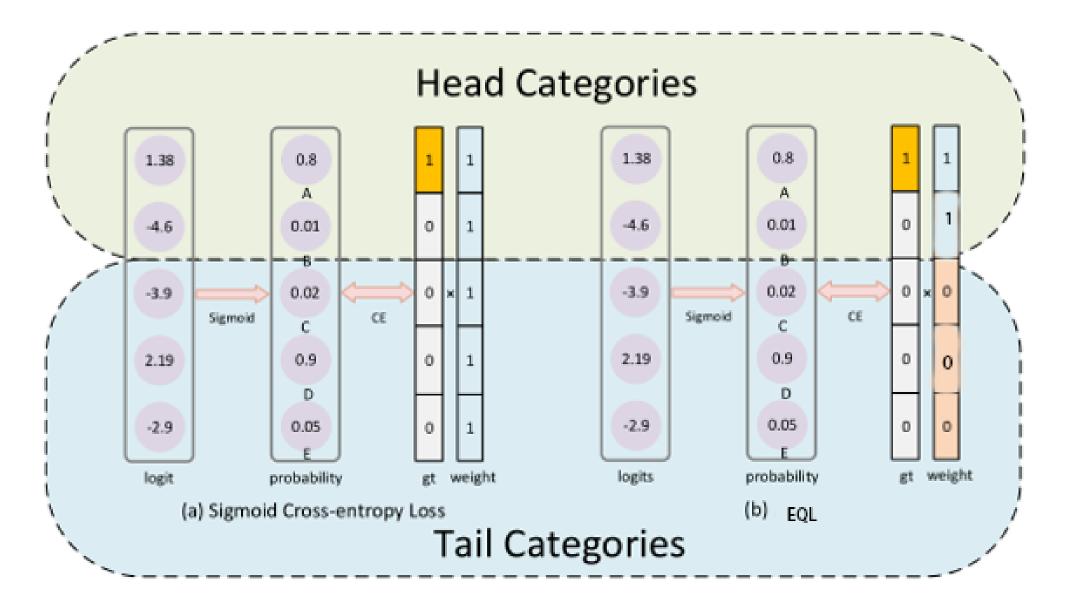
In summary, there are two particular designs in equalization loss function:

 $TR(\lambda) = \frac{\sum_{j}^{C} T_{\lambda}(f_{j}) N_{j}}{\sum_{i}^{C} N_{j}}$

1) We ignore the discouraging gradients of negative samples for rare categories whose quantity frequency is under a threshold.

2) We do not ignore the gradients of background samples. If all the negative samples for the rare categories are ignored, there will be no negative samples for them during training, and the learned model will predict a large number of false positives.

equalization loss (EQL)



Softmax equalization loss (SEQL)

Extend to Image Classification

Softmax equalization loss (SEQL)

$$L_{SEQL} = -\sum_{j=1}^{C} y_j \log(\tilde{p_j})$$

$$\tilde{p_j} = \frac{e^{z_j}}{\sum_{k=1}^{C} \tilde{w_k} e^{z_k}}$$
(10)

$$\tilde{w_k} = 1 - \beta T_\lambda(f_k)(1 - y_k) \tag{11}$$

1st place in the LVIS Challenge 2019/2020

	Backbone	EQL	AP	AP_{50}	AP ₇₅	AP_r	AP_c	AP_f	AP _{bbox}
Mask R-CNN	R-50-C4	X	19.7	32.5	20.3	7.9	21.1	22.8	20.3
WIASK K-CININ	K-30-C4	1	22.5	36.6	23.5	14.4	24.9	22.6	23.1
Mask R-CNN	R-101-C4	X	21.8	35.6	22.7	10.5	23.4	24.2	22.9
WIASK K-CININ	K-101-C4	1	24.1	38.7	25.6	15.8	26.8	24.1	25.6
Mask R-CNN	R-50-FPN	X	20.1	32.7	21.2	7.2	19.9	25.4	20.5
WIASK K-CININ	K-30-111N	1	22.8	36.0	24.4	11.3	24.7	25.1	23.3
Mask R-CNN	R-101-FPN	X	22.2	35.3	23.4	9.8	22.6	26.5	22.7
WIASK K-CININ	K-101-171N	1	24.8	38.4	26.8	14.6	26.7	22.8 22.6 24.2 24.1 25.4 25.1 26.5 26.4	25.2
Cascade Mask R-CNN	R-50-FPN	X	21.1	33.3	22.2	6.3	21.6	26.5	21.1
Cascade Mask K-CININ	K-30-11 N	1	23.1	35.7	24.3	10.4	24.5	26.3	23.1
Cascade Mask R-CNN	R-101-FPN	X	21.9	34.3	23.2	6.0	22.3	27.7	24.7
Cascaut Mask N-CININ	K-101-17PN	1	24.9	37.9	26.7	10.3	27.3	27.8	27.9

Table 1: Results on different frameworks and models. All those models use class-agnostic mask prediction and are evaluated on LVIS v0.5 val set. AP is mask AP, and subscripts 'r', 'c' and 'f' stand for rare, common and frequent categories respectively. For equalization loss function, the λ is set as 1.76×10^{-3} to include all the rare and common categories.

	AP	AP_{50}	AP ₇₅	AP_r	AP_c	AP_f	AP_S	AP_M	AP_L	AP_{bbox}
Sigmoid Loss	20.1	32.7	21.2	7.2	19.9	25.4	19.3	35.7	45.0	20.5
Softmax Loss	20.2	32.6	21.3	4.5	20.8	25.6	19.9	36.3	44.7	20.7
Class-aware Sampling [38]	18.5	31.1	18.9	7.3	19.3	21.9	17.3	32.1	40.9	18.4
Repeat Factor Sampling [15]	21.3	34.9	22.0	12.2	21.5	24.7	19.6	35.3	46.2	21.6
Class-balanced Loss [5]	20.9	33.8	22.2	8.2	21.2	25.7	19.8	36.1	46.4	21.0
Focal Loss [27]	21.0	34.2	22.1	9.3	21.0	25.8	19.8	36.5	45.5	21.9
EQL(Ours)	22.8	36.0	24.4	11.3	24.7	25.1	20.5	38.7	49.2	23.3

Table 5: Comparison with other methods on LVIS v0.5 val set. All experiments are performed based on ResNet-50 Mask R-CNN.

南京航空航天大学 Nanjing University of Aeronautics and Astronautics

Ablation Studies on Object Recognition

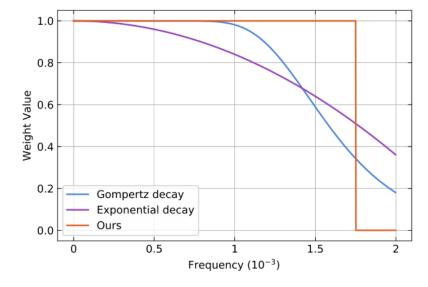
F

Frequency Threshold λ:	$\lambda(10^{-3})$	TR(%)	AP	AP_r	AP_c	AP_f	AP _{bbox}
	0	0	20.1	7.2	19.9	25.4	20.5
	$0.176(\lambda_r)$	0.93	20.8	11.7	20.2	25.2	20.8
	0.5	3.14	22.0	11.2	22.8	25.2	22.4
	0.8	4.88	22.3	11.4	23.4	25.3	23.0
	1.5	7.82	22.8	11.0	24.5	25.5	23.0
	$1.76(\lambda_c)$	9.08	22.8	11.3	24.7	25.1	23.3
	2.0	9.83	22.7	11.3	24.3	25.3	23.2
	3.0	13.12	22.5	11.0	24.0	25.3	23.1
	5.0	18.17	22.4	10.0	23.6	25.7	23.0

Table 2: Ablation study for different λ . λ_r is about 1.76 × 10^{-4} , which exactly includes all rare categories. λ_c is about 1.76×10^{-3} , which exactly includes all rare and common categories. When λ is 0, our equalization loss degenerates to sigmoid cross-entropy.

Ablation Studies on Object Recognition

Frequen Threshold Function $T_{\lambda}(f)$:



	AP	AP_r	AP_c	AP_f	AP _{bbox}
Exponential decay	22.3	10.4	24.0	25.0	22.8
Gompertz decay	22.7	11.0	24.5	25.1	23.2
Ours	22.8	11.3	24.7	25.1	23.3

Figure 3: Illustration of different design for threshold function $T_{\lambda}(f)$.

Exponential decay
$$y = 1 - (af)^n$$
 a= 400 and n= 2

Gompertz decay $y = 1 - ae^{-be^{-cf}}$ a= 1, b= 80, c= 3000

E(r):

					AP _{bbox}
X	22.2	12.5	24.7	23.1	22.7
					23.3

Table 4: Ablation study of Excluding Function E(r). The top row is the results without using the term E(r), and the bottom row is the results with it.

Experiments

Experiments on Open Images Detection

	AP					
SGM	48.13 56.50	59.86	51.24	49.31	46.51	33.72
CAS [38]	56.50	64.44	59.30	59.74	57.02	42.00
EQL(Ours)	57.83	64.95	60.18	61.17	58.23	44.6

Table 6: Results on OID19 val set based on ResNet-50. SGM and CAS stand for sigmoid cross-entropy and classaware sampling. We sort all the categories by their image number and divide them into 5 groups. TR and λ is 3% and 3×10^{-4} respectively.

Method	Acc@top1	Acc@Top5
Focal Loss [†] [27]	35.62	-
Class Balanced [†] [5]	36.23	-
Meta-Weight Net [†] [40]	37.91	-
SEQL(Ours)	43.38	71.94

Experiments on Image Classification

Table 8: Results on CIFAR-100-LT test set based on ResNet-32 [18]. We use γ of 0.95 and λ of 3.0×10^{-3} . † means that the results are copied from origin paper [5, 40]. Imbalanced factor is 200.

Method	Acc@Top1	Acc@Top5
FSLwF [†] [11]	28.4	-
Focal Loss [†] [27]	30.5	-
Lifted Loss [†] [34]	30.8	-
Range Loss [†] [44]	30.7	-
OLTR [†] [30]	35.6	-
SEQL(Ours)	36.44	61.19

Table 10: Results on ImageNet-LT test set based on ResNet-10 [18]. The optimal γ and λ are 0.9 and 4.3×10^{-4} respectively. † means that the results are copied from origin paper [30]



Adaptive Class Suppression Loss for Long-Tail Object Detection

Tong Wang^{1,2}, Yousong Zhu^{1,3}, Chaoyang Zhao¹, Wei Zeng^{4,5}, Jinqiao Wang^{1,2,6}, Ming Tang¹

CVPR 2021

Table 1: Experiments on LVIS with different groups.

Groups	$\mid mAP$	$ AP_r $	AP_c	AP_f
(0,5)[5,∞)	22.74	6.83	22.14	29.83
$(0,50)[50,\infty)$	25.30	15.11	24.99	29.77
$(0,500)[500,\infty)$	25.66	13.19	25.98	30.25
$(0,5000)[5000,\infty)$	23.89	8.27	23.87	30.16

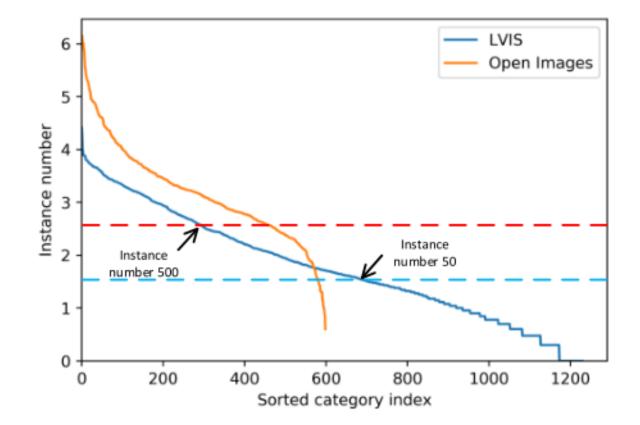


Figure 2: The data distribution of LVIS and Open Images dataset. The x-axis represents the sorted category index. Y-axis is the base-10 logarithm of the instance number.

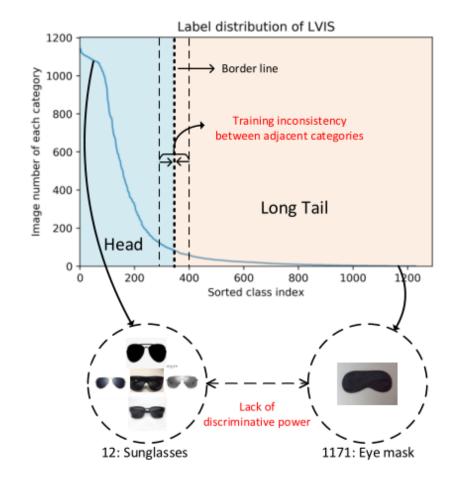


Figure 1: The label distribution of LVIS [11] dataset. The x-axis represents the sorted category index of LVIS. The y-axis is the image number of each category.

Adaptive Class Suppression loss (ACSL)

Adaptive Class Suppression Loss

$$L_{ACSL}(x_s) = -\sum_{i=1}^{C} w_i log(\hat{p}_i) \qquad \qquad w_i = \begin{cases} 1, & \text{if } i = k \\ 1, & \text{if } i \neq k \text{ and } p_i \geq \xi \\ 0, & \text{if } i \neq k \text{ and } p_i < \xi \end{cases}$$

$$\frac{\partial L_{ACSL}}{\partial z_i} = \begin{cases} p_i - 1, & \text{if } i = k \\ w_i p_i, & \text{if } i \neq k \end{cases}$$

Advantages: ACSL takes the network learning status into consideration.

ACSL works in a more fine-grained sample level.

ACSL does not depend on the class distribution.

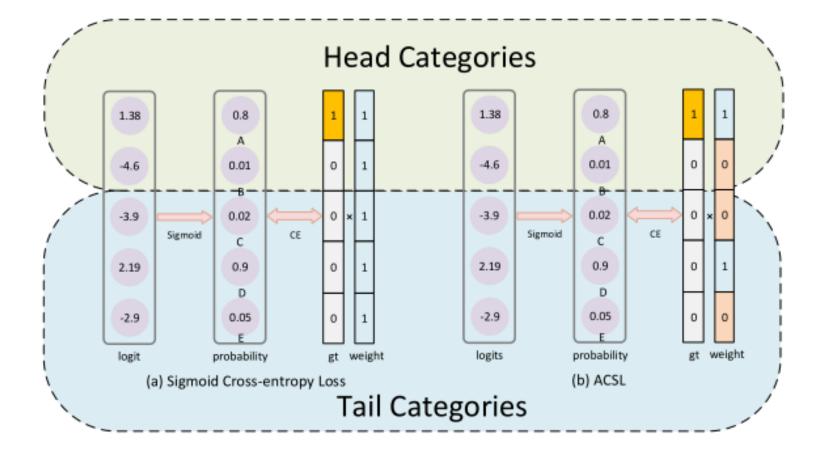


Figure 3: An illustration of Sigmoid Cross-entropy Loss and our proposed ACSL. The top two classes belong to head categories and the bottom three classes belong to tail categories. For ACSL, the hyper-parameter ξ is 0.7.

Experiments on LVIS

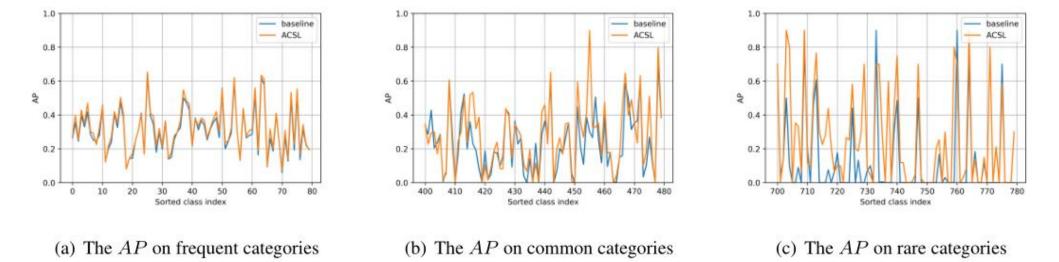


Figure 4: The *AP* of baseline and ACSL on frequent, common and rare categories, respectively. Both models are trained with ResNet50-FPN backbone. The x-axis is the sorted class index. The y-axis means the precision.

Table 4: Comparison with state-of-the-art methods on LVIS-v0.5 *val* dataset. **Bold** numbers denote the best results among all models. "ms" means multi-scale testing.

Methods	backbone	$\mid mAP$	$ AP_r$	AP_c	AP_f	AP@0.5	AP@0.75	AP_s	AP_m	AP_l
Focal Loss [20]		21.95	10.49	22.42	25.93	35.15	23.91	18.66	28.59	31.46
CBL [5]		23.9	11.4	23.8	27.3	_	_	_	_	_
LDAM [2]	ResNet-50	24.5	14.6	25.3	26.3	_	_	_	_	_
RFS [11]	Resnet-30	24.9	14.4	24.5	29.5	41.6	25.8	19.8	30.6	37.2
LWS [15]		24.1	14.4	24.4	26.8	_	_	_	_	_
SimCal [31]		23.4	16.4	22.5	27.2	_	_	_	_	_
	ResNet-50	25.06	11.92	25.98	29.14	40.14	27.30	20.08	31.50	38.67
EQL [29]	ResNet-101	26.05	11.45	27.14	30.51	41.30	27.83	20.35	33.73	40.75
CBL [5] LDAM [2] RFS [11] LWS [15] SimCal [31]	ResNeXt-101-64x4d	28.04	15.03	29.14	31.87	44.06	30.07	22.19	34.52	42.97
	ResNet-50	25.96	17.65	25.75	29.54	43.58	27.15	20.26	32.81	40.10
BAGS [18]	ResNet-101	26.39	16.80	25.82	30.93	43.44	27.63	20.29	34.39	41.07
	ResNeXt-101-64x4d	27.83	18.78	27.32	32.07	45.83	35.15 23.91 18.66 28.59 31 $ 41.6$ 25.8 19.8 30.6 $3'$ $ 41.6$ 25.8 19.8 30.6 $3'$ $ 40.14$ 27.30 20.08 31.50 38 41.30 27.83 20.35 33.73 40 44.06 30.07 22.19 34.52 42 43.58 27.15 20.26 32.81 40 43.44 27.63 20.29 34.39 41 45.83 28.99 21.92 35.65 43 42.38 28.63 20.43 33.11 40 43.45 29.69 21.11 34.96 42 45.54 31.19 22.16 35.81 43 44.46 28.54 20.9	43.11		
	ResNet-50	26.36	18.64	26.41	29.37	42.38	28.63	20.43	33.11	40.21
	ResNet-101	27.49	19.25	27.60	30.65	43.45	29.69	21.11	34.96	42.00
ACSI (Ours)	ResNeXt-101-64x4d	28.93	21.78	28.98	31.72	45.54	31.19	22.16	35.81	43.43
ACOL (Ours)	ResNet-50 (ms)	27.24	17.86	27.42	30.76	44.46	28.54	20.96	34.40	41.68
	ResNet-101 (ms)	28.23	17.42	28.40	32.32	44.73	30.13	21.86	35.43	44.06
	ResNeXt-101-64x4d (ms)	29.47	20.30	29.45	33.15	46.82	31.55	22.52	37.32	45.51

Moreover, the utilization of ACSL is not limited to a certain type of detector.

Objects in Open Images have multiple labels, we train the models under multiple label setting.

Table 5: Experiments on Open Images with different backbones.

Backbone	Methods	AP
ResNet50-FPN	baseline ours	55.1 60.3
ResNet101-FPN	baseline ours	56.3 61.6
ResNet152-FPN	baseline ours	57.4 62.8

Table 6:	The	detailed	precision	on	some	of	the	tail	categories	of
Open Im	ages									

	Spa	Scr	Fac	Cas	Hor
img num	38	46	49	53	54
baseline ACSL	35.0 41.6(+6.6)	46.6 55.6(+9.0)	17.8 80.9(+63.1)	19.9 47.5(+27.6)	8.3 16.6(+8.3)
	Slo	Obo	Squ	Bin	Ser
img num	103	93	97	109	106
baseline ACSL	25.0 45.0(+20)	22.2 83.3(+61.1)	29.1 50.3(+21.2)	42.7 61.5(+18.8)	40.2 73.2(+33)

Table 7: Comparison with other methods on Open Images. All models are trained with ResNet50-FPN backbone and evaluated on 500 categories.

Method	AP	
Class Aware Sampling [28]	56.50	
Equalization Loss [29]	57.83	
Ours	61.70	

Ablation Study

ξ	mAP	AP_r	AP_c	AP_f
_	21.18	4.30	20.09	29.28
—	22.28	7.38	22.34	28.17
0.01	23.53	11.48	22.73	29.35
0.1	25.11	16.04	24.72	29.22
0.3	25.72	17.65	25.45	29.27
0.5	26.08	18.61	25.85	29.36
0.7	26.36	18.64	26.41	29.37
0.9	25.99	17.25	26.0	29.46
	- - 0.01 0.1 0.3 0.5 0.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 2: Experimental results of ACSL with different ξ .

Table 3: Results with larger backbones ResNet101, ResNeXt-101-64x4d and stronger detector Cascade R-CNN.

Models	Method	$\mid mAP$	$ AP_r$	AP_c	AP_f
Faster R101	baseline Ours	22.36 27.49	3.14 19.25	21.82 27.60	30.72 30.65
Faster X101	baseline Ours	24.70 28.93	5.97 21.78	24.64 28.98	32.26 31.72
Cascade R101	baseline Ours	25.14 29.71	3.96 21.72	24.55 29.43	34.35 33.26
Cascade X101	baseline Ours	27.14 31.47	4.36 23.39	27.32 31.50	36.03 34.66

Conclusion

1.

We propose a new statistic-free perspective to understand the long-tail distribution, thus significantly avoiding the dilemma of manual hard division.

2.

We present a novel adaptive class suppression loss (ACSL) that can effectively prevent the training inconsistency of adjacent categories and improve the discriminative power of rare categories.

3.

We conduct comprehensive experiments on long-tail object detection datasets L VIS and Open Images. ACSL achieves 5.18% and 5.2% improvements with ResNet50-FPN on L VIS and OpenImages respectively, which validates its effectiveness.

Other LOSS

$$egin{aligned} &L_{seesaw}(\mathbf{z}) = -\sum_{i=1}^C y_i \log(\widehat{\sigma}_i), \ & ext{with } \widehat{\sigma}_i = rac{e^{z_i}}{\sum_{j
eq i}^C \mathcal{S}_{ij} e^{z_j} + e^{z_i}}. \end{aligned}$$

The S_{ij} is obtained by multiplying the M_{ij} of the mitigation factor and the compensation factor C_{ij} .

Conference on Computer Vision and Pattern Recognition

Thanks for Listening