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' Graph Neural Networks

Output [0][0] = (9*0) + (4*2) + (1*4) +
(1*1) + (1*0) + (1*1) + (2*0) + (1*1)

. =0+8+1+4+1+0+1+0+1
- 16

................

o e GCN

j ' ~ Hidden layer Hidden layer
- = - ™
° ]
Input image Filter Output array . ® * ®
|I'l|:IIJ‘t ® - ® . Clutput
NN ' -
. RelU RelLU >
* - . ] .
o ® I8 + )" —n-.-. o [ e
L ] L] L]
s ® e
] ®
° ]
. * -
L] e
° '\ o \
® ®




' Graph Neural Networks _ieniass| (g

For these models, the goal is to learn a function of signals/features on a graph G = (V, £)

which takes as input:
1. A feature description x; for every node i; summarized in a N X K feature matrix X (N:

number of nodes, K: number of input features)
2. A representative description of the graph structure in matrix form; typically in the form
of an adjacency matrix A (or some function thereof)

__ FHD, A) =0 (AHU)WU))

where A = A+ 1,
D" is the diagonal node degree matrix of A"

Hidden layer Hidden layer
' ™y e



https://tkipf.github.io/graph-convolutional-networks/

' Relational Knowledge Distillation bl

Point to P‘oint Structure to Structure
Conventional KD Relational KD




' Distilling Holistic Knowledge Sl
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' Distilling Holistic Knowledge
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' Graph Convolution Network
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' INfoNCE Estimator
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' The overall framework of the HKD method

Algorithm 1 Holistic Knowledge Distillation

Input: Training dataset D = {(x;,vy;)}._,; A pre-trained

teacher model with parameter W’ A student model
with random initialized parameters W?;

Output: A well-trained student model;

1: while W? is not converged do
2
3

Sample a mini-batch B with size b from D.
Forward propagation B into W' and W* to obtain
feature representation f, f* and prediction p’, p*.
Construct attributed context graph G* and G°.
Extract holistic knowledge with graph neural net-
works by Equation (5).(6).
Calculate the Mutual information between graph-
based representation as Equation (10).
Update parameters W* by backward propagation
the gradients of the loss in Equation (9).
end while

# 5
! na




' Experiments
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Table 1. Test accuracy (%) of the student networks on the CIFAR100 dataset of combining distillation methods with KD.

Teacher ResNet32x4  ResNet32x4 VGGI3 ResNet50 ResNet50 ARI (%)
Student ResNet8 x4  ShuffleNetV2 MobileNetV2 VGGS8 MobileNetV?2
Teacher 79.42 79.42 74.64 79.34 79.34 /
Student 1219 £026 72631071 6533+£063 7056+032 65332063
KD 73.55+ 020 7538 +0.52 68.08+0.24 73.76 +0.09 67.83+0.46 | 126.48 %
AT+KD 74.80 = 0.15 76.51 £0.16 6637 +£0.13 7391 024 66.81 =0.11 | 152.84 %
PKT+KD | 74.68 £0.07 76.16 £0.16 68.08+0.94 74.19+0.27 68.42+0.39 | 55.63 %
SP+KD 73.99 £ 005 76.02+0.34 6846 +0.37 73504020 68.18+0.57 | 80.89 %
CC+KD 7444 +£0.14 7581 2020 6854 +0.21 7348+ 0.16 68.92+0.16 | 58.96 %
RKD+KD | 74.18 £ 0.09 7564 +0.24 68.24+0.46 73.81 £0.11 68.52+0.14 | 72.15 %
CRD+KD | 7564 +0.25 7641 £0.36 69.82+0.22 7441+ 031 69.86+0.04 15.32 %
SSKD+KD | 75.80 £0.58 76.36 £0.38 69.12+0.54 74.68 +0.22 69.53 +0.43 18.86 %
HKD 75.63 +£0.22 7631030 6997 +042 74.86+0.17 69.83 +0.15 12.94 %
HKD+KD | 76.13 £ 0.05 76.92 +0.22 7048 +0.25 7488 +0.30 70.72 + 0.32 /
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Table 2. Test accuracy (%) of the student networks on the TinyImageNet dataset of combining distillation methods with KD.

' Experiments

Teacher ResNet32x4  ResNet32 x4 VGGI13 ResNet50 VGGI3
Student ResNet8x4  ShuffleNetV2 MobileNetV2 VGG8 VGGS ARL(%)
Teacher 57.92 57.92 52.02 55.44 52.02 /
Student 4991 +£0.16 50.60+0.23 44204+0.22 47.00+0.17 47.00+0.17
KD 5228 £ 0.07 57.27+£0.03 4539+4+059 51504+036 51.34+0.08 | 123.18%
AT+KD 5479 +£0.23 5756 +038 45.13+0.60 51424+042 51.03+0.28 | 122.61 %
PKT+KD | 54.11 £0.18 58.33+0.36 47.73+0.31 5145+0.28 51.61 £0.28 | 35.51 %
SP+KD 5422 +041 58.66 +0.25 48.10+0.59 51.70+0.12 51.51 +£0.32 | 29.98 %
CC+KD 5408 +0.32 5820+0.06 47.67+1.14 5087+020 51.07+033 | 44.12%
RKD+KD | 53.78 £0.15 57.85+0.24 48.10+0.26 51.01 £0.23 50.59 +£0.32 | 46.70 %
CRD+KD | 55.53+041 58954+0.05 49.12+0.04 5287 +0.30 52.25+0.26 7.88 %
SSKD+KD | 55.10+2.05 5748+0.04 47.02+090 5236+0.36 51.60+0.16 | 3551 %
HKD 55.53+007 58.83+0.09 4953+032 5220+020 51.97+0.33 | 1048 %
HKD+KD | 56.18 + 0.12 59.31 = 0.01 49.57 - 0.54 53.30 +0.33 52.62 +0.03 /




' Experiments

Table 4. Representation transferability experiments of the student
network. The student network is trained on the CIFAR100 dataset
and transferred to the TinylmageNet and the STL10 dataset. A
linear classifier is evaluated on the frozen representations of the
student network.

Dataset TinyImageNet STL-10
T:ResNet50 30.79 £ 0.01 | 70.16 = 0.07
S:MobileNetV2 | 23.01 £0.05 | 61.42+0.10
KD 2292 +0.13 | 6125 3 0.09
AT+KD 25.02 £ 0.01 | 62.05 £ 0.06
PKT+KD 26.04 £0.11 | 63.71 = 0.05
SP+KD 2498 £ 0.08 | 62.25 1+ 0.13
CC+KD 25.68 £0.03 | 62.52 £ 0.10
RKD + KD 26.10 = 0.03 | 63.26 = 0.03
CRD + KD 2898 +0.05 | 65.87 = 0.10
SSKD + KD 2424 £ 0.02 | 61.78 = 0.02
HKD + KD 30.55 £ 0.03 | 67.28 + 0.08
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§ ML-GCN

Multi-Label Loss
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§ Multi-Label + Knowledge Distillation et Qg

We have tried these in the past few weeks:

1. Classwise Relational Knowledge Distillation I
— it works, but not enough N
2. Correlation Matrix KL divergence/MSE
“We model the label correlation dependency in the form of conditional l

probability, i.e., P(L; |L;) which denotes the probability of occurrence of label
L; when label L; appears. As shown in Fig.3, P(L; |L;) # P(L;|L;). Thus, the
correlation matrix is asymmetrical.”

3. Cosine Similarity Weighted Distance
t.) t;
Plixk = i

[ = Zz’,j P@'A(Si, Sj)




§ Multi-Label KD + GNN?
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