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Graph Neural Networks

CNN

GCN
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Graph Neural Networks

For these models, the goal is to learn a function of signals/features on a graph 𝐺 = (𝒱, ℰ)
which takes as input:
1. A feature description 𝑥𝑖 for every node 𝑖; summarized in a 𝑁 × 𝐾 feature matrix 𝑋 (𝑁: 
number of nodes, 𝐾: number of input features)
2. A representative description of the graph structure in matrix form; typically in the form 
of an adjacency matrix 𝐴 (or some function thereof)

where 𝐴^ = 𝐴 + 𝐼 , 
𝐷^ is the diagonal node degree matrix of 𝐴^

https://tkipf.github.io/graph-convolutional-networks/

https://tkipf.github.io/graph-convolutional-networks/
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Relational Knowledge Distillation
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Distilling Holistic Knowledge
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Distilling Holistic Knowledge
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Graph Convolution Network

𝜙(·) is the KNN-based graph construction function

𝑫 :  diagonal degree matrix
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InfoNCE Estimator
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The overall framework of the HKD method
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Experiments
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Experiments
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Experiments
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ML-GCN
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Multi-Label + Knowledge Distillation

We have tried these in the past few weeks:

1. Classwise Relational Knowledge Distillation
→ it works, but not enough

2. Correlation Matrix  KL divergence/MSE
“We model the label correlation dependency in the form of conditional 

probability, i.e., 𝑃(𝐿𝑗 |𝐿𝑖) which denotes the probability of occurrence of label 

𝐿𝑗 when label 𝐿𝑖 appears. As shown in Fig.3, 𝑃(𝐿𝑗 |𝐿𝑖) ≠ 𝑃(𝐿𝑖|𝐿𝑗). Thus, the 

correlation matrix is asymmetrical.”

3. Cosine Similarity Weighted Distance
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Multi-Label KD + GNN?
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