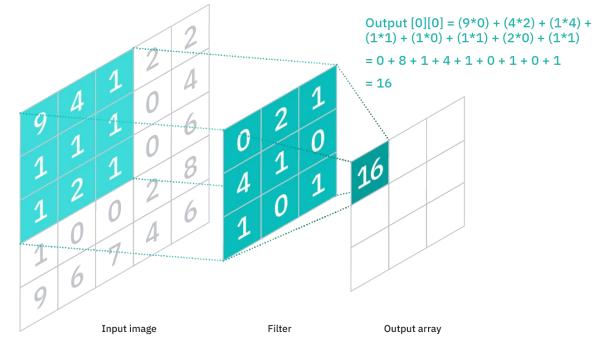
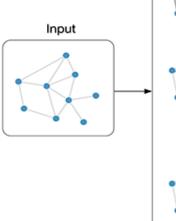


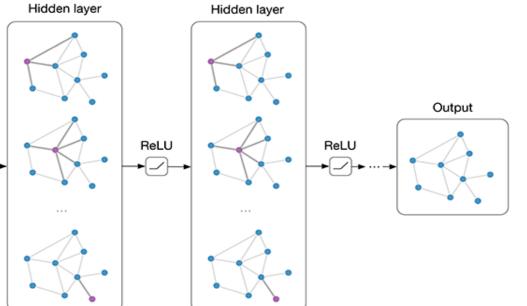
Distilling Holistic Knowledge with Graph Neural Networks

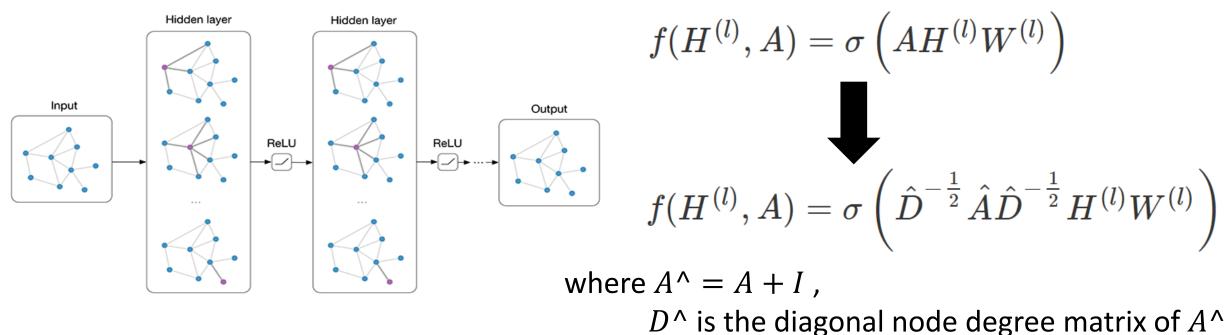

Sheng Zhou^{1,2*}, Yucheng Wang^{1*}, Defang Chen¹, Jiawei Chen³, Xin Wang⁴, Can Wang¹, Jiajun Bu^{1†}

¹Zhejiang Provincial Key Laboratory of Service Robot, Zhejiang University ²School of Software Technology, Zhejiang University ³University of Science and Technology of China ⁴Tsinghua University


ICCV 2021

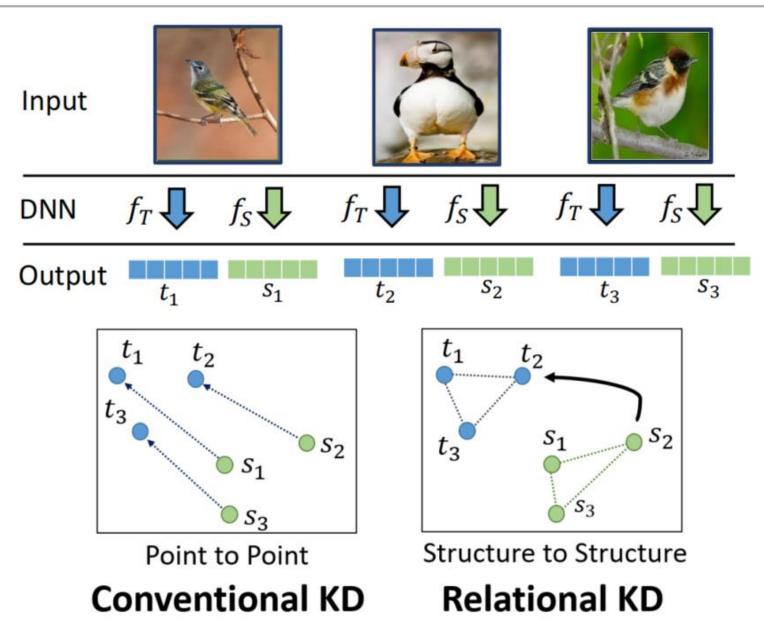
Graph Neural Networks



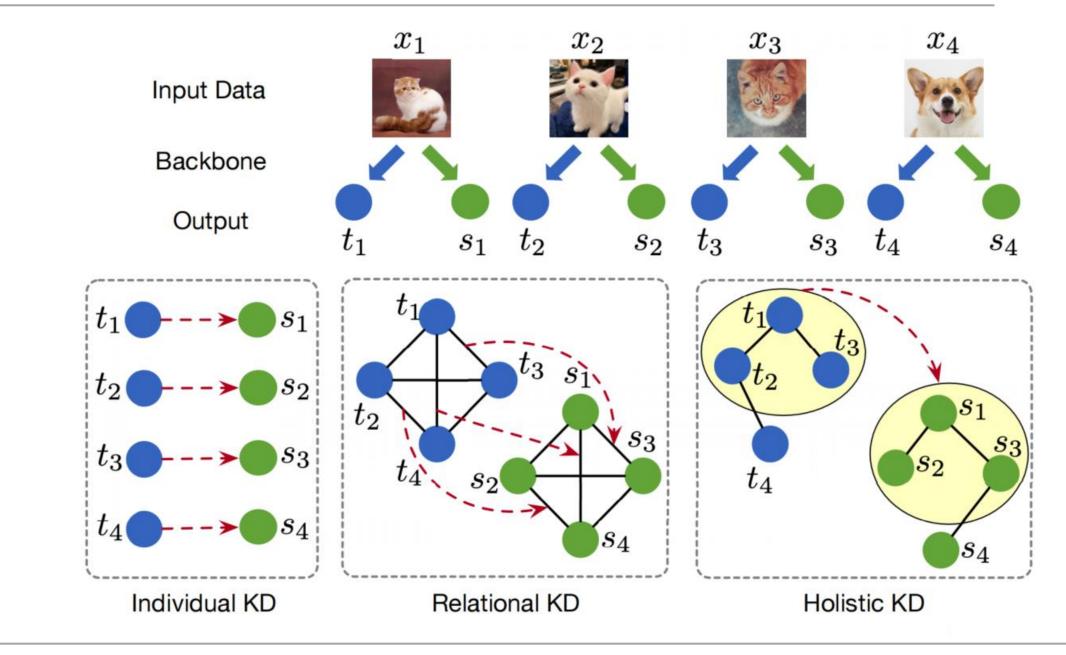


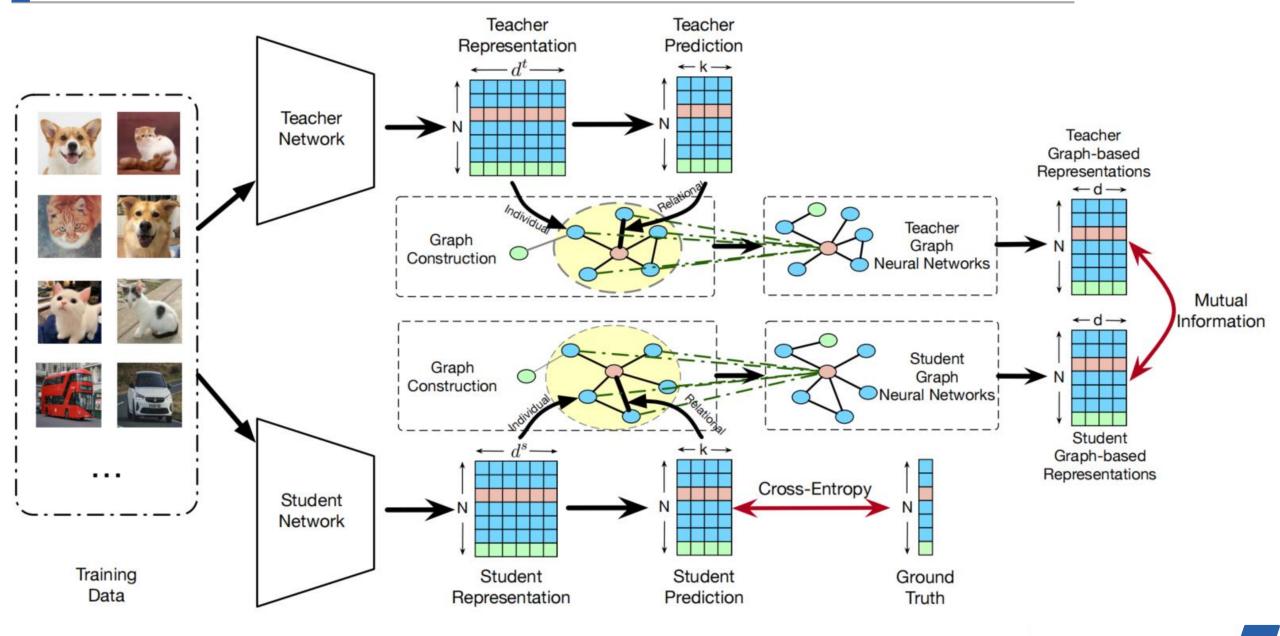
Graph Neural Networks

For these models, the goal is to learn a function of signals/features on a graph $G = (\mathcal{V}, \mathcal{E})$ which takes as input:

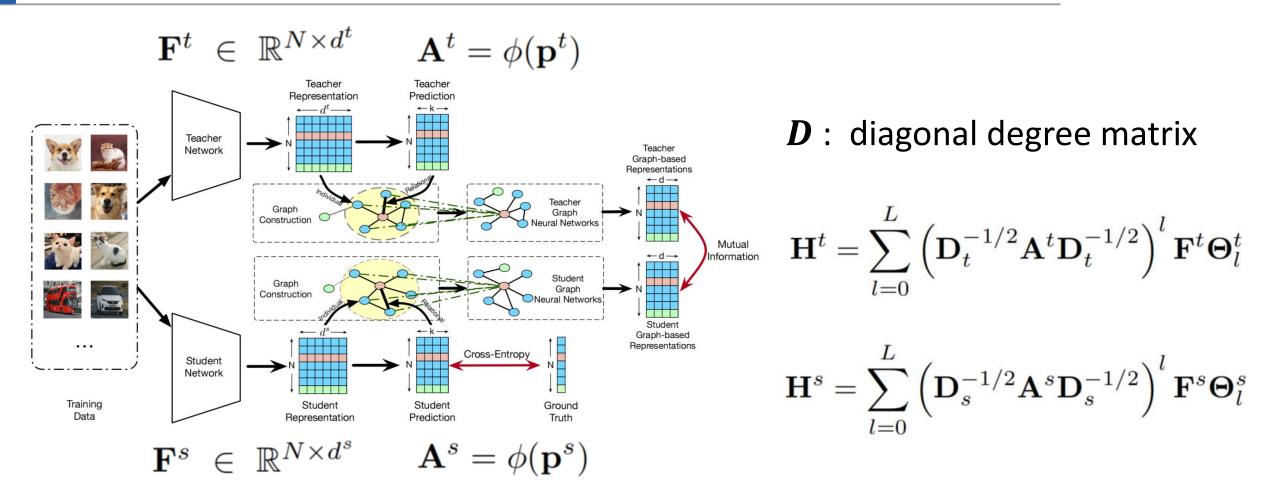

1. A feature description x_i for every node i; summarized in a $N \times K$ feature matrix X (N: number of nodes, K: number of input features)

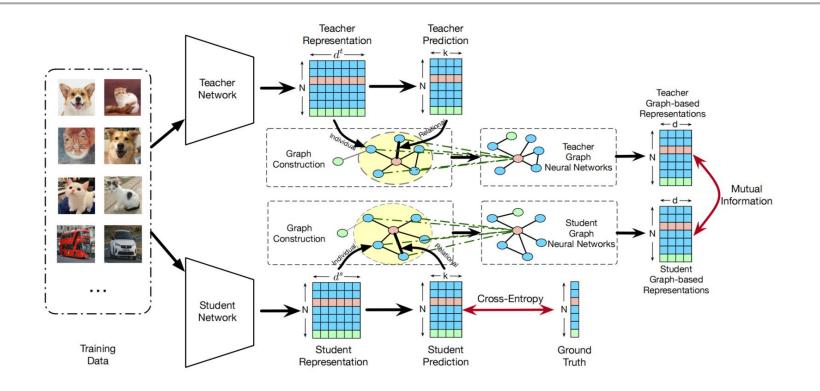
2. A representative description of the graph structure in matrix form; typically in the form of an adjacency matrix A (or some function thereof)


Relational Knowledge Distillation



Distilling Holistic Knowledge


Distilling Holistic Knowledge


Graph Convolution Network

 $\phi(\cdot)$ is the KNN-based graph construction function

InfoNCE Estimator

$$\begin{split} \mathbf{I}(\mathbf{H}^{t},\mathbf{H}^{s}) &\geq \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\log\frac{e^{f(\mathbf{h}_{i}^{t},\mathbf{h}_{i}^{s})}}{\frac{1}{N}\sum_{j=1}^{N}e^{f(\mathbf{h}_{i}^{t},\mathbf{h}_{j}^{s})}}\right]\\ \widetilde{\mathcal{L}}_{HOL} &= \sum_{i=1}^{N}\log\frac{e^{f(\mathbf{h}_{i}^{t},\mathbf{h}_{i}^{s})}}{e^{f(\mathbf{h}_{i}^{t},\mathbf{h}_{i}^{s})} + \sum_{j=1, j\neq i}^{N}e^{f(\mathbf{h}_{i}^{t},\mathbf{f}_{j}^{s})}} + \log\frac{e^{f(\mathbf{h}_{i}^{s},\mathbf{h}_{i}^{t})}}{e^{f(\mathbf{h}_{i}^{s},\mathbf{h}_{i}^{s})} + \sum_{j=1, j\neq i}^{N}e^{f(\mathbf{h}_{i}^{s},\mathbf{f}_{j}^{s})}} \end{split}$$

The overall framework of the HKD method

Algorithm 1 Holistic Knowledge Distillation.

- **Input:** Training dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$; A pre-trained teacher model with parameter \mathbf{W}^t ; A student model with random initialized parameters \mathbf{W}^s ;
- Output: A well-trained student model;
 - 1: while \mathbf{W}^s is not converged do
 - 2: Sample a mini-batch \mathcal{B} with size b from \mathcal{D} .
 - 3: Forward propagation \mathcal{B} into \mathbf{W}^t and \mathbf{W}^s to obtain feature representation \mathbf{f}^t , \mathbf{f}^s and prediction \mathbf{p}^t , \mathbf{p}^s .
 - 4: Construct attributed context graph \mathbf{G}^t and \mathbf{G}^s .
- Extract holistic knowledge with graph neural networks by Equation (5),(6).
- 6: Calculate the Mutual information between graphbased representation as Equation (10).
- 7: Update parameters \mathbf{W}^s by backward propagation the gradients of the loss in Equation (9).
- 8: end while

Experiments

Table 1. Test accuracy (%) of the student networks on the CIFAR100 dataset of combining distillation methods with KD.						ous with KD.
Teacher Student	ResNet32×4 ResNet8×4	ResNet32×4 ShuffleNetV2	VGG13 MobileNetV2	ResNet50 VGG8	ResNet50 MobileNetV2	ARI (%)
Teacher Student	$\begin{array}{r} 79.42 \\ 72.79 \pm 0.26 \end{array}$	$\begin{array}{r} 79.42 \\ 72.63 \pm 0.71 \end{array}$	$74.64 \\ 65.33 \pm 0.63$	$79.34 \\ 70.56 \pm 0.32$	$\begin{array}{c} 79.34 \\ 65.33 \pm 0.63 \end{array}$	1
KD	73.55 ± 0.20	75.38 ± 0.52	68.08 ± 0.24	73.76 ± 0.09	67.83 ± 0.46	126.48 %
AT+KD	74.80 ± 0.15	76.51 ± 0.16	66.37 ± 0.13	73.91 ± 0.24	66.81 ± 0.11	152.84 %
PKT+KD	74.68 ± 0.07	76.16 ± 0.16	68.08 ± 0.94	74.19 ± 0.27	68.42 ± 0.39	55.63 %
SP+KD	73.99 ± 0.05	76.02 ± 0.34	68.46 ± 0.37	73.50 ± 0.20	68.18 ± 0.57	80.89 %
CC+KD	74.44 ± 0.14	75.81 ± 0.20	68.54 ± 0.21	73.48 ± 0.16	68.92 ± 0.16	58.96 %
RKD+KD	74.18 ± 0.09	75.64 ± 0.24	68.24 ± 0.46	73.81 ± 0.11	68.52 ± 0.14	72.15 %
CRD+KD	75.64 ± 0.25	76.41 ± 0.36	69.82 ± 0.22	74.41 ± 0.31	69.86 ± 0.04	15.32 %
SSKD+KD	75.80 ± 0.58	76.36 ± 0.38	69.12 ± 0.54	74.68 ± 0.22	69.53 ±0.43	18.86 %
HKD	75.63 ± 0.22	76.31 ± 0.30	69.97 ± 0.42	74.86 ± 0.17	69.83 ± 0.15	12.94 %
HKD+KD	$\textbf{76.13} \pm \textbf{0.05}$	$\textbf{76.92} \pm \textbf{0.22}$	$\textbf{70.48} \pm \textbf{0.25}$	$\textbf{74.88} \pm \textbf{0.30}$	$\textbf{70.72} \pm \textbf{0.32}$	1

Table 1. Test accuracy (%) of the student networks on the CIFAR100 dataset of combining distillation methods with KD.

Experiments

Table 2. Test accuracy (%) of the student networks on the ringinagenet dataset of combining distination methods with KE						
Teacher	ResNet32×4	ResNet32 \times 4	VGG13	ResNet50	VGG13	ARI (%)
Student	ResNet8×4	ShuffleNetV2	MobileNetV2	VGG8	VGG8	AKI (70)
Teacher	57.92	57.92	52.02	55.44	52.02	,
Student	49.91 ± 0.16	50.60 ± 0.23	44.20 ± 0.22	47.00 ± 0.17	47.00 ± 0.17	/
KD	52.28 ± 0.07	57.27 ± 0.03	45.39 ± 0.59	51.50 ± 0.36	51.34 ± 0.08	123.18 %
AT+KD	54.79 ± 0.23	57.56 ± 0.38	45.13 ± 0.60	51.42 ± 0.42	51.03 ± 0.28	122.61 %
PKT+KD	54.11 ± 0.18	58.33 ± 0.36	47.73 ± 0.31	51.45 ± 0.28	51.61 ± 0.28	35.51 %
SP+KD	54.22 ± 0.41	58.66 ± 0.25	48.10 ± 0.59	51.70 ± 0.12	51.51 ± 0.32	29.98 %
CC+KD	54.08 ± 0.32	58.20 ± 0.06	47.67 ± 1.14	50.87 ± 0.20	51.07 ± 0.33	44.12 %
RKD+KD	53.78 ± 0.15	57.85 ± 0.24	48.10 ± 0.26	51.01 ± 0.23	50.59 ± 0.32	46.70 %
CRD+KD	55.53 ± 0.41	58.95 ± 0.05	49.12 ± 0.04	52.87 ± 0.30	52.25 ± 0.26	7.88 %
SSKD+KD	55.10 ± 2.05	57.48 ± 0.04	47.02 ± 0.90	52.36 ± 0.36	51.60 ± 0.16	35.51 %
HKD	55.53 ± 0.07	58.83 ± 0.09	49.53 ± 0.32	52.20 ± 0.20	51.97 ± 0.33	10.48 %
HKD+KD	$\textbf{56.18} \pm \textbf{0.12}$	$\textbf{59.31} \pm \textbf{0.01}$	49.57 ± 0.54	$\textbf{53.30} \pm \textbf{0.33}$	$\textbf{52.62} \pm \textbf{0.03}$	1

Table 2. Test accuracy (%) of the student networks on the TinyImageNet dataset of combining distillation methods with KD.

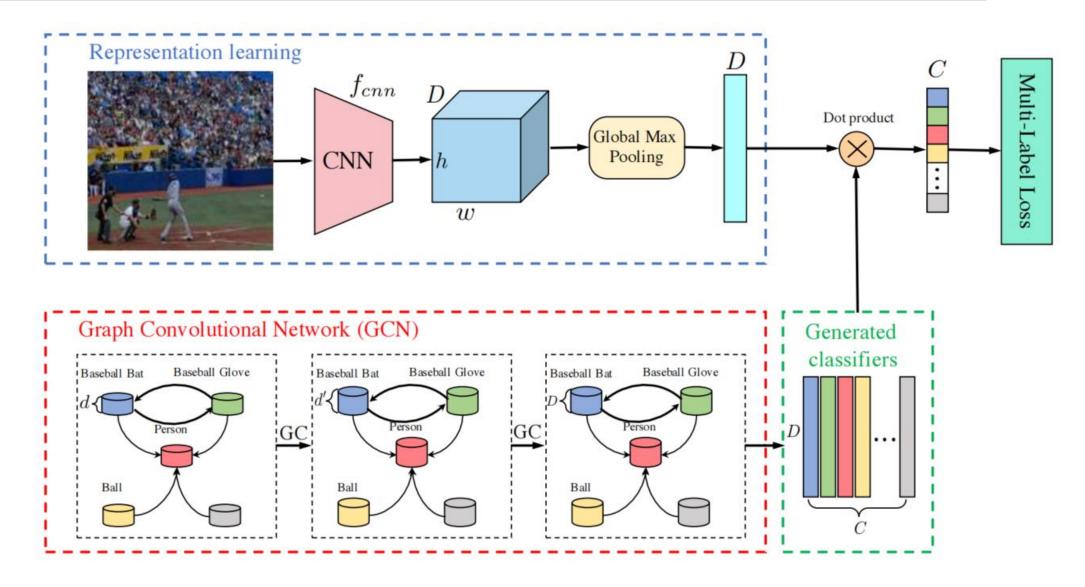

Experiments

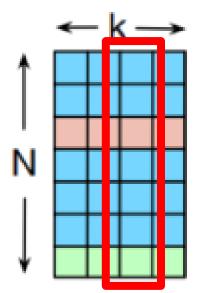
Table 4. Representation transferability experiments of the student network. The student network is trained on the CIFAR100 dataset and transferred to the TinyImageNet and the STL10 dataset. A linear classifier is evaluated on the frozen representations of the student network.

ent network.					
Dataset	TinyImageNet	STL-10			
T:ResNet50	30.79 ± 0.01	70.16 ± 0.07			
S:MobileNetV2	23.01 ± 0.05	61.42 ± 0.10			
KD	22.92 ± 0.13	61.25 ± 0.09			
AT+KD	25.02 ± 0.01	62.05 ± 0.06			
PKT+KD	26.04 ± 0.11	63.71 ± 0.05			
SP+KD	24.98 ± 0.08	62.25 ± 0.13			
CC+KD	25.68 ± 0.03	62.52 ± 0.10			
RKD + KD	26.10 ± 0.03	63.26 ± 0.03			
CRD + KD	28.98 ± 0.05	65.87 ± 0.10			
SSKD + KD	24.24 ± 0.02	61.78 ± 0.02			
HKD + KD	$\textbf{30.55} \pm \textbf{0.03}$	$\textbf{67.28} \pm \textbf{0.08}$			

ML-GCN

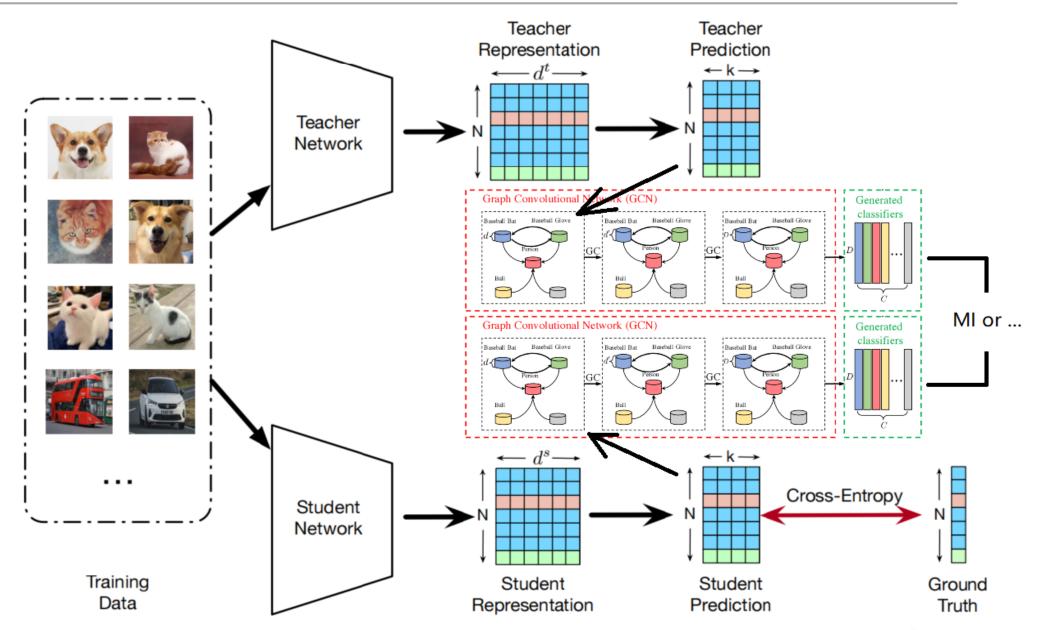
Multi-Label + Knowledge Distillation

We have tried these in the past few weeks:


- 1. Classwise Relational Knowledge Distillation
 - \rightarrow it works, but not enough

2. Correlation Matrix KL divergence/MSE

"We model the label correlation dependency in the form of conditional probability, i.e., $P(L_j | L_i)$ which denotes the probability of occurrence of label L_j when label L_i appears. As shown in Fig.3, $P(L_j | L_i) \neq P(L_i | L_j)$. Thus, the correlation matrix is asymmetrical."


3. Cosine Similarity Weighted Distance

$$[P]_{k \times k} = \frac{t_i^\top t_j}{\|t_i\| \|t_j\|}$$
$$l = \sum_{i,j} P_{ij} \Delta(s_i, s_j)$$

Multi-Label KD + GNN?

Thanks for Listening