

Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object Detection

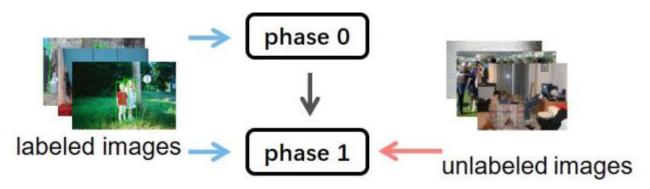
Zhenyu Wang Yali Li Ye Guo Lu Fang Shengjin Wang

CVPR2021

Motivation

- weakly supervised object detection (WSOD): utilize large data with weak annotations, such as image labels, points.
- semi-supervised object detection (SSOD): learn detectors with a small amount of box-level labeled images and large unlabeled images.

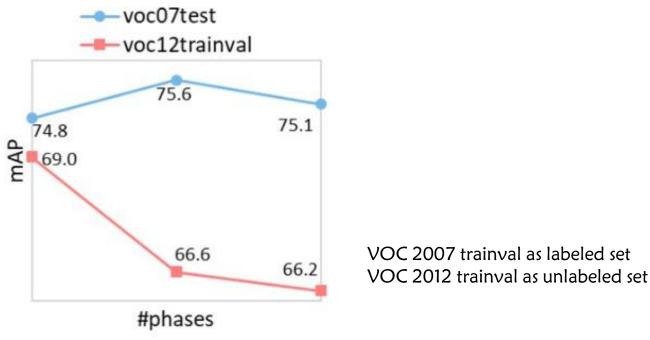
consistency



Motivation

When pseudo annotations are noisy with some false information, detection models are also able to learn to fit them. This fitting ability to incorrect annotations surpasses the representative learning for correct ones.

label noise overfitting problem



🔷 image level

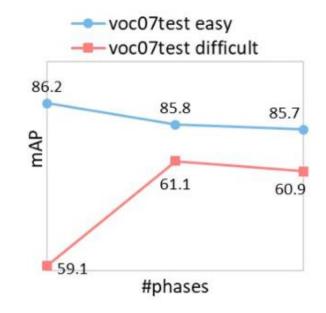
the model over-focuses on difficult images with more noise and ignores easy images

Image Uncertainty Guided Selection

♦ region level

some regions are similar to some existing objects but they are not highly overlapped with any positive instances.

Region Uncertainty Guided Rol Re-weighting



the detected objects in image(i.e.pseudo labels): $\{(bb_{mn}, s_{mn})\}_{m=1}^{M}$

The average of all bounding boxes' scores inside an image measures the certainty degree of all annotations.

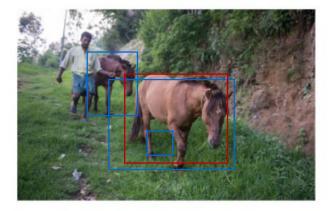
$$\overline{s}_m = \sum_{m=1}^M s_{mn}/M$$

Images with a small \overline{s}_m are regarded as difficult ones and are filtered out in the first several phases.

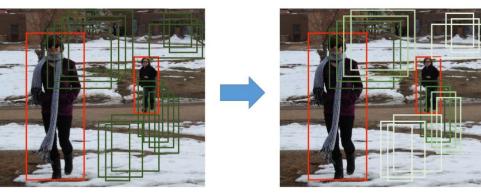
Region Uncertainty Guided Rol Re-weighting

The strategy discovers uncertain regions and reduces their gradients by downweighting to facilitate more accurate and certain regions standing out.

♦ overlap based uncertainty

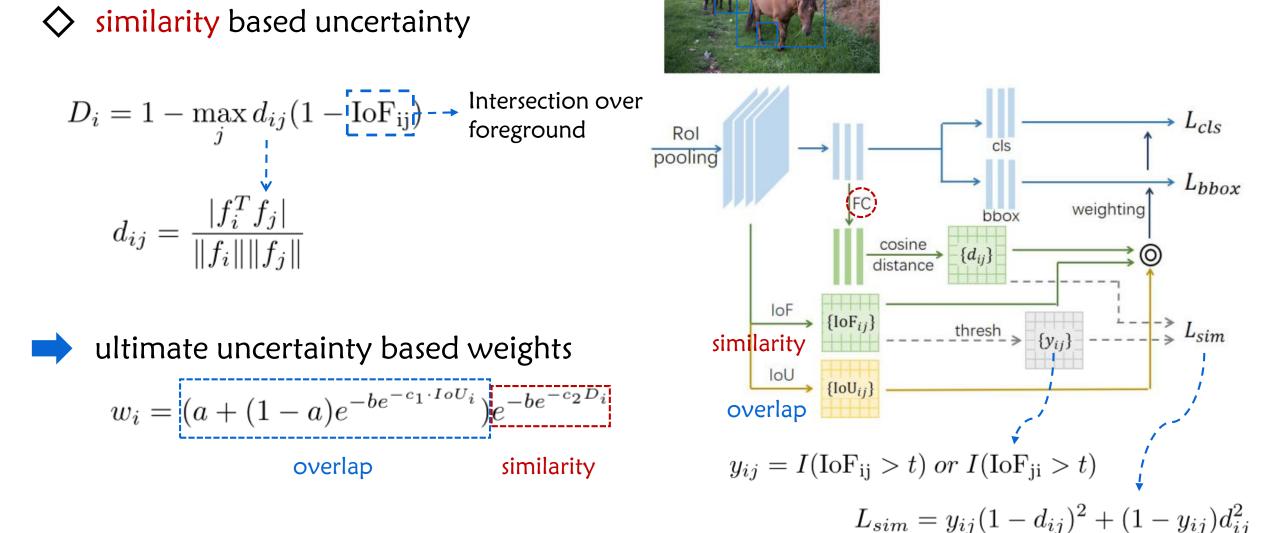


$$w_i = a + (1 - a)e^{-be^{-c \cdot IoU_i}} \qquad \text{Gompertz function:} \\ y(t) = ae^{-be^{-ct}}$$

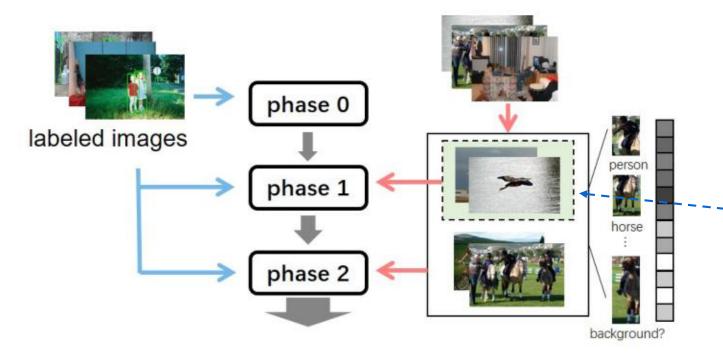


Gradient Weighting

Region Uncertainty Guided Rol Re-weighting



Multi-Phase Learning



Algorithm 1 The overall procedure for multi-phase SSOD learning.

Require:

The number of training phases, N

Training:

Train a FSOD model with all labeled data.

Set the initial easy data fraction: k = 1/N

for i = 1; i <= N; i + + do

1. Predict on unlabeled data with all current models.

2. Take the intersection for all current pseudo labels.

3. Select top k easy images from unlabeled images.

4. Train a SSOD model with labeled and easy unlabeled data.

5.
$$k = k + 1/N$$

end for

Testing:

Ensemble testing results from all models to generate ultimate results.

Uncertainty Guided Multi-phase Learning

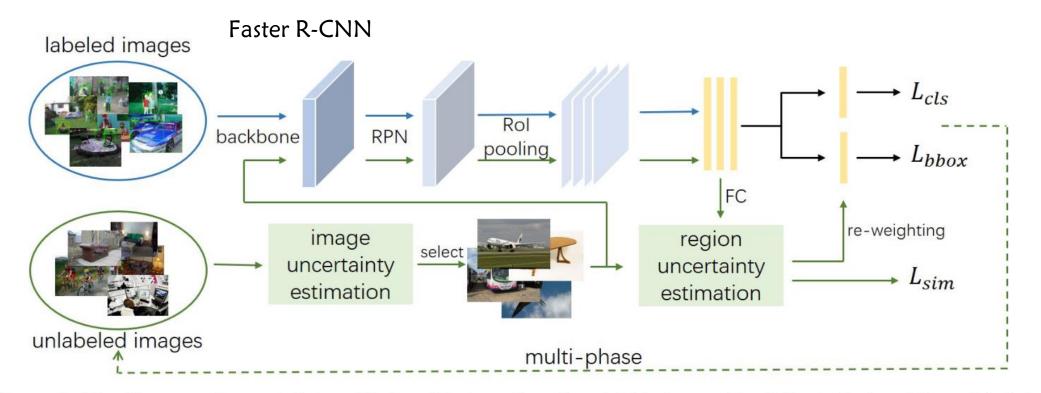


Figure 3: The diagram of uncertainty guided multi-phase learning. Multi-phase self-training is designed for unlabeled images flow in SSOD. Image uncertainty estimation and region uncertainty estimation guide the multi-phase SSOD learning.

dataset: PASCALVOC, MSCOCO

Table 1: Semi-supervised Detection Results on PASCAL							
VOC 2007 test vs. current SSOD methods and fully-							
supervised results trained on VOC07 or VOC0712. (L: la-							
beled data, Un: unlabeled data.)							

	Model	Backbone	Method	L	Un	mAP
	Fastar		FS	VOC07	-	74.8
			Baseline	VOC07	VOC12	75.6
two-	Faster RCNN	ResNet50	DD [33]	VOC07	VOC12	76.0
stage	KUNIN		ours	VOC07	VOC12	78.6
siage			FS	VOC0712	-	81.2
one-stage	SSD300		FS	VOC07	-	70.2
			Baseline	VOC07	VOC12	71.8
		VGG16 ISD [17]	CSD [16]	VOC07	VOC12	72.3
	33D300		VOC07	VOC12	73.3	
			ours	VOC07	VOC12	74.5
			FS	VOC0712	-	77.2

Table 2: Semi-supervised detection Results on COCO minival *vs.* current SSOD and FSOD results. [†] denotes that the performance is obtained by the final model after the multi-phase learning without ensemble.

1	0					
Backbone	Method	L	Un	AP	AP_{50}	AP_{75}
	FS	co-35	-	31.3	52.0	33.0
	DD	co-35	co-80	33.1	53.3	35.4
	ours	co-35	co-80	34.8	55.1	37.2
	ours + DD	co-35	co-80	35.2	55.7	37.6
ResNet50	FS	co-115	-	37.4	58.1	40.4
Residence	DD	co-115	co-120	37.9	60.1	40.8
	PL [40]	co-115	co-120	38.4	59.7	41.7
	ours	co-115	co-120	40.1	60.4	43.7
	$ours^{\dagger} + DD$	co-115	co-120	38.9	59.4	42.3
	ours + DD	co-115	co-120	40.3	61.0	43.9
	FS	co-115	-	39.4	60.1	43.1
ResNet101	DD	co-115	co-120	40.1	62.1	43.5
	ours	co-115	co-120	42.2	62.5	46.1
	$ours^{\dagger} + DD$	co-115	co-120	41.2	61.5	44.9
	ours + DD	co-115	co-120	42.3	62.7	46.3

Table 3:	Ablation	Study	on	PASCAL	VOC	2007	test.
(RR: RoI	Re-weigh	ting)					

Model	L	Un	Two- Phase	RR	Ensemble	mAP
	VOC07	-				74.8
Fastar	VOC07	VOC12				75.6
Faster RCNN	VOC07	VOC12	\checkmark			76.1
	VOC07	VOC12	\checkmark	\checkmark		77.4
	VOC07	VOC12	\checkmark	\checkmark	\checkmark	78.6
SSD300	VOC07	-				70.2
	VOC07	VOC12				71.8
	VOC07	VOC12	\checkmark			72.3
	VOC07	VOC12	\checkmark		\checkmark	74.5

We perform ablation study on PASCAL VOC to analyze the impacts of 1) multi-phase learning, 2) Rol Re-weighting strategy, 3) model ensembling during inference.

Rol Re-weighting Analysis

Table 4: Effect of RoI Re-weighting on SSOD compared with Baseline and Soft Sampling. $0 \sim 2$ is the ensemble result of model from phase 0 (FS model) to phase 2.

Phase	Baseline	Soft Sampling	RoI Re-weighting
0 (FS Model)	74.8	74.8	74.8
1	75.9	76.2	76.6
2	76.1	76.6	77.4
$0\sim 2$	77.8	78.1	78.6

Model Divergence Analysis

Table 5: Detection results from different models. $0 \sim 2$ indicates the ensemble result of model from phase 0 (fully-supervised model) to phase 2.

Phase	VOC07	VOC07 Test	VOC07 Test
Fliase	Test	(easy)	(difficult)
0 (FS Model)	74.8	86.2	59.1
1	76.6	86.7	62.7
2	77.4	86.4	63.8
$1 \sim 2$	78.3	87.3	65.4
$0\sim 2$	78.6	87.3	66.2

Discussion

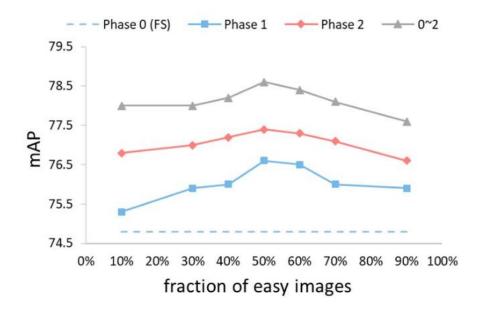


Figure 6: **Two-phase SSOD with different amount of** easy data, mAP reaches the peak when the ratio is 50%.

More data do not necessarily lead to better performance for SSOD.

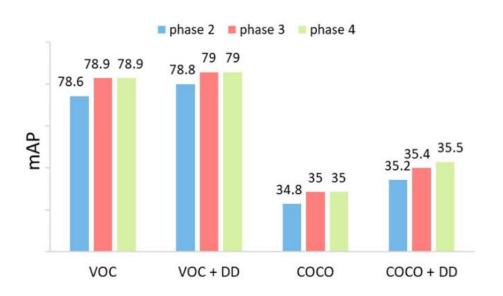


Figure 7: Multiple phases semi-supervised learning on VOC07 test and COCO minival.

two-phase learning is a good choice in practice

