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I Deep Feature Interpolation (DFI)

Input
Figure 1. Aging a face with DFL



I Deep Feature Interpolation (DFI)

Deep Feature Interpolation

Step 1: Map images to deep feature space Step 1: Mapping details
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Figure 2. A schematic outline of the four high-level DFI steps.




I Four high-level steps

O Map the images in the target S* and source S* set into the deep
feature representation through the pre-trained (VG6-19) conv-net.

O Compute the mean feature values for each set of images, ¢t and ¢°,
and define their differences as the attribute vector.

W=q5t—g55

O Map the test image x to a point ¢(x) in the deep feature space and
move it along the attribute vector w, resulting in ¢(x) + aw.

O Reconstruct the transformed output image z by solving the reverse
mapping into pixel space.
¢(z) = p(x) + aw



I Detail

These neighbors can be selected in fwo ways.

O Selecting St and S°. The attribute labels are (un)available.
_ 1 - 1
o = Y ¢(x") and ¢° = = Y ox*). 3
xteN}, xseNj;

O Deep feature mapping.
* VGG19 pre-trained on ILSVRC2012, which has proven to be effective at artistic
style transfer.
 Pick the first layer from the last three regions, conv3_1, conv4_1 and convb_1.

[0 Reverse mapping. Z = arg min%||(c;5(x)+aw)—c;5(z)||§+)\V;aRwsr (z), (4)

z

where Ry s is the Total Variation regularizer [2%] which
encourages smooth transitions between neighboring pixels,

b | T

RVS(Z)ZZ ((Ez,j+1 — Ei,j)z + (EHLJ — i,j )2)

i,

(3)

Here, z; ; denotes the pixel in location (i, j) in image z.
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Figure 4. (Zoom in for details.) Filling missing regions. Top. LFW faces. Bottom. UT Zappos50k shoes. Inpainting is an interpolation
from masked to unmasked images. Given any dataset we can create a source and target pair by simply masking out the missing region. DFI
uses K =100 such pairs derived from the nearest neighbors (excluding test images) in feature space. The face results match wrinkles, skin
tone, gender and orientation (compare noses in 3rd and 4th images) but fail to fill in eyeglasses (3rd and 11th images). The shoe results match
style and color but exhibit silhouette ghosting due to misalignment of shapes. Supervised attributes were not used to produce these results.
For the curious, we include the source image but we note that the goal is to produce a plausible region filling—not to reproduce the source.
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I Traditional data augmentation

O Traditional data augmentation is an effective technique to alleviate the
overfitting problem in ftraining deep networks.
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I Traditional VS. Semantic data augmentation

Traditional Data Augmentation

Flipping Rotatlng Translating

Semantic Data Augmentation

Changing Color Changing J Changing
Background Visual Angle
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I Idea

Training Data

Augmented Images

(Not Shown Explicitly)
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O Deep Feature Space
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Fig. 2. An overview of ISDA. Inspired by the observation that certain directions in the feature space correspond to meaningful semantic transformations,
we augment the training data semantically by translating their features along these semantic directions, without involving auxiliary deep networks. The
directions are obtained by sampling random vectors from a zero-mean normal distribution with dynamically estimated class-conditional covariance
matrices. In addition, instead of performing augmentation explicitly, ISDA boils down to minimizing a closed-form upper-bound of the expected

cross-entropy loss on the augmented training set, which makes our method highly efficient.



I Motivation
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I Method

O Human annotation X
« Huge annotation cost.
« Tt is difficult to pre-define all possible semantic
transformations for each class.
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O Random sampling X
« Sampling totally at random will yield many Barking
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(b) Random Sampling




I Methods - Semantic Directions Sampling

O Each category of samples has its own distribution. In fact, this data distribution implies the potential
semantic direction. "Bird" has a large variance in the direction of “flying", while variance in the direction of
"getting old" is almost O.

® Birds

Y Human

Like PCA
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I Methods - Semantic Directions Sampling
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I N\e‘l’hods Algorithm 1 The ISDA algorithm.

1: Input: D, Ao

2: Randomly initialize W, b and ©

3: fort =0to 1 do

4 Sample a mini-batch {z;,y; }2 | from D
Compute a; = G(x;, ©)

Compute L according to Eq.
Update W, b, ® with SGD

9: end for
10: Output: W, b and ©

Estimate the covariance matrices .1, X9, ...,

Y

M w, a]"+by,

Y Z Wi Z —log( ZC wlal"+b; ), ()
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I Experiments

Augmented Randomly Generated

Fig. 7. Visualization of the semantically augmented images on ImageNet. ISDA is able to alter the semantics of images that are unrelated to the class
identity, like backgrounds, actions of animals, visual angles, etc. We also present the randomly generated images of the same class.
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