

HOTR: End-to-End Human-Object Interaction Detection with Transformers

Bumsoo Kim^{1,2} Junhyun Lee² Jaewoo Kang² Eun-Sol Kim^{1,†} Hyunwoo J. Kim^{2,†} ¹Kakao Brain ²Korea University

> CVPR 2021

Human-Object Interaction (HOI)

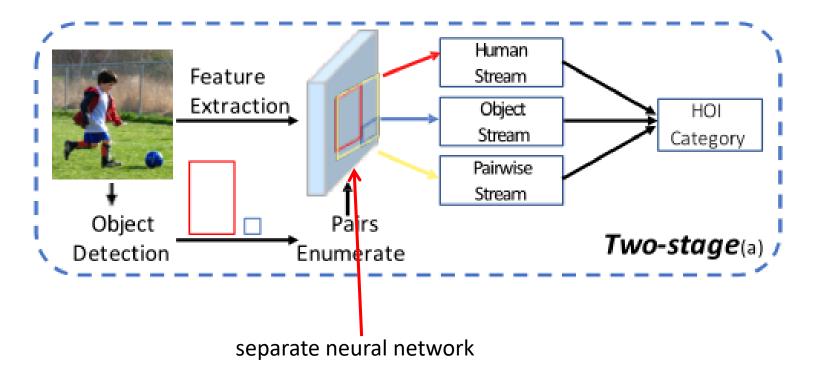
(b)

(c)

(a) There can be many possible objects (green boxes) interacting with a detected person (blue box)

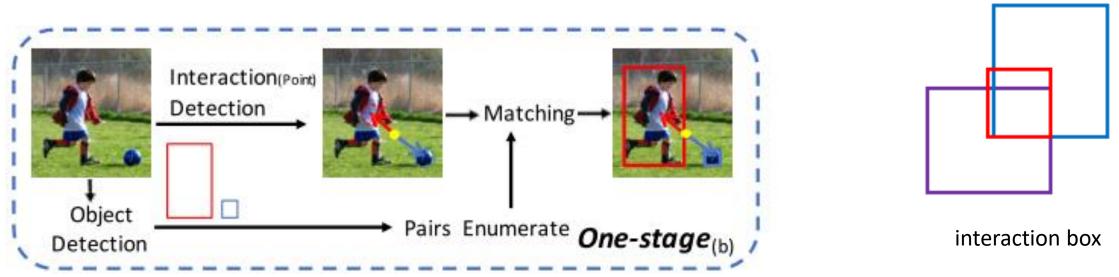
(b) A <human, object, action> triplet was detected. <huma

<human, knife, cut>


(c) Another predicted action (stand)

<human, , stand>

Existing methods



- 1. sequential HOI detectors(two stage)
- 2. parallel HOI detectors(one stage)

time-consuming 、 computationally expensive

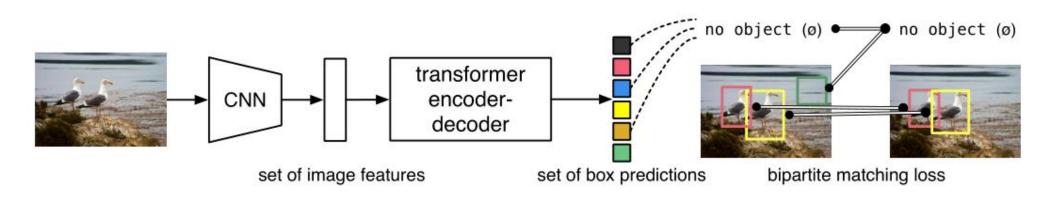
interaction point

Since they can be parallelized with existing object detectors, they feature fast inference time.

However, these works are limited in that they require a hand-crafted postprocessing stage to associate the localized interactions with object detection results.

<human, object, interaction>

considering the inherent semantic relationships between the triplets in an end-to-end manner


formulate HOI detection as set prediction

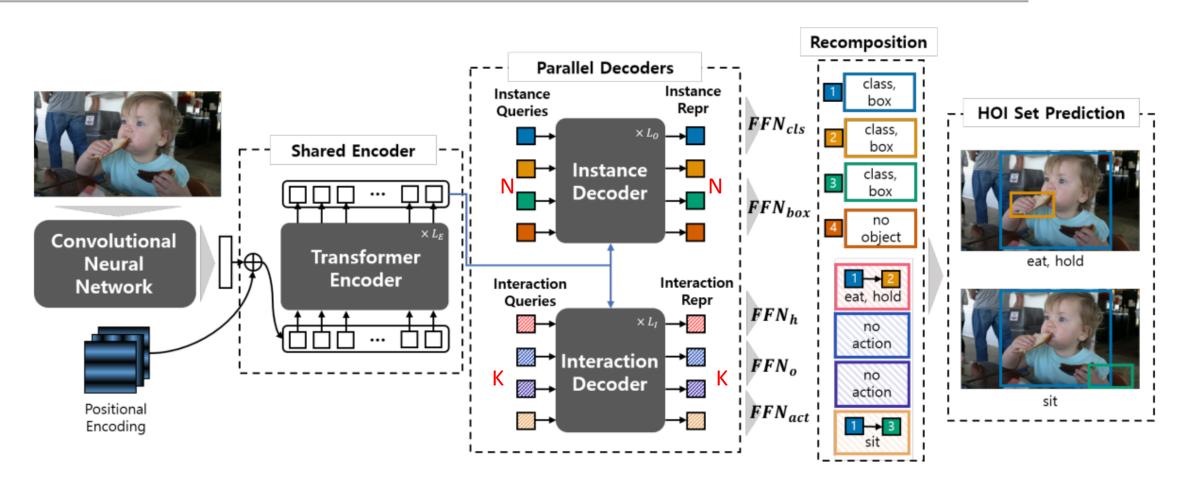
parallelly predicts a set of object detection and associates the human and object of the interaction, while the self-attention in transformers models the relationships between the interactions.

Object Detection as Set Prediction: the transformer encoder-decoder structure in DETR transforms N positional embeddings to a set of N predictions for the object class and bounding box.

N queries \rightarrow N predictions N predictions \rightarrow N ground truth

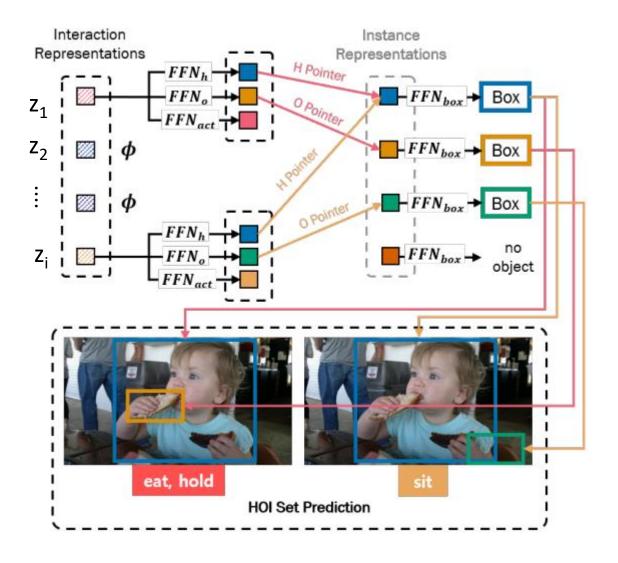
Similar to object detection, **HOI detection** can be defined as a **set prediction problem** where each prediction includes the localization of a human region (i.e., subject of the interaction), an object region (i.e., target of the interaction) and multi-label classification of the interaction types.

One straightforward extension is to modify the **MLP heads** of DETR to transform each **positional embedding** to predict a **human box**, **object box**, and **action classification**.


However, this architecture poses a problem where the localization for the same object needs to be redundantly predicted with multiple positional embeddings.

 \succ HO pointers

Framework



The architecture features a transformer encoder-decoder structure with a shared encoder and two parallel decoders (i.e., instance decoder and interaction decoder).

The results of the two decoders are associated with using HO Pointers to generate final HOI triplets.

$$v_i^h = \text{FFN}_h(z_i)$$

 $v_i^o = \text{FFN}_o(z_i)$

indices of the instance representations with the highest similarity scores:

$$\hat{c}_{i}^{h} = \underset{j}{\operatorname{argmax}} \left(\operatorname{sim}(v_{i}^{h}, \mu_{j}) \right)$$
$$\hat{c}_{i}^{o} = \underset{j}{\operatorname{argmax}} \left(\operatorname{sim}(v_{i}^{o}, \mu_{j}) \right)$$

 μ_j is the j-th instance representation $\sin(u,v) = u^\top v / \|u\| \|v\|$

µ: N instance representations **z**: K interaction representations \hat{c}^h and \hat{c}^o : their HO Pointers

 $\hat{b}_{i}^{h} = \operatorname{FFN}_{\operatorname{box}}(\mu_{\hat{c}_{i}^{h}}) \in \mathbb{R}^{4}$ $\hat{b}_{i}^{o} = \operatorname{FFN}_{\operatorname{box}}(\mu_{\hat{c}_{i}^{o}}) \in \mathbb{R}^{4}$ $\hat{a}_{i} = \operatorname{FFN}_{\operatorname{act}}(z_{i}) \in \mathbb{R}^{\gamma}.$

The final HOI prediction by the HOTR is the set of K triplets, $\{\langle \hat{b}_i^h, \hat{b}_i^o, \hat{a}_i \rangle\}_{i=1}^K$.

Training HOTR

1. Introduce the cost matrix of Hungarian Matching for unique matching between the ground-truth HOI triplets and HOI set predictions obtained by recomposition.

2. Using the matching result, defining the loss for HO Pointers and the final training loss.

Let **Y** denote the set of ground truth HOI triplets and $\hat{\mathcal{Y}} = {\{\hat{y}_i\}_{i=1}^K}$ as the set of K predictions.

a permutation of K elements with the lowest cost:

$$\hat{\sigma} = \underset{\sigma \in \mathfrak{S}_{K}}{\operatorname{argmin}} \sum_{i}^{K} \mathcal{C}_{\operatorname{match}}(y_{i}, \hat{y}_{\sigma(i)})$$
$$\mathcal{C}_{\operatorname{match}}(y_{i}, \hat{y}_{\sigma(i)}) = -\alpha \cdot \mathbb{1}_{\{a_{i} \neq \varnothing\}} \hat{P}^{h}[\sigma(i), c_{i}^{h}] \\ -\beta \cdot \mathbb{1}_{\{a_{i} \neq \varnothing\}} \hat{P}^{o}[\sigma(i), c_{i}^{o}] \\ +\mathbb{1}_{\{a_{i} \neq \varnothing\}} \mathcal{L}_{\operatorname{act}}(a_{i}, \hat{a}_{\sigma(i)})$$
$$\mathcal{L}_{\operatorname{act}}(a_{i}, \hat{a}_{\sigma(i)}) = \operatorname{BCELoss}(a_{i}, \hat{a}_{\sigma(i)})$$

$$\begin{split} \mu' &= \mu / \|\mu\| \\ M &= [\mu'_1 \dots \mu'_N] \\ \hat{P}^h &= \|_{i=1}^K \mathrm{softmax}((\bar{v}^h_i)^T M) \end{split}$$

 $\hat{P}[i, j]$ denotes the element at i-th row and j-th column.

compute the Hungarian loss for all pairs matched:

$$\begin{aligned} \mathcal{L}_{\mathrm{H}} &= \sum_{i=1}^{K} \left[\mathcal{L}_{\mathrm{loc}}(\mathbf{c}_{i}^{h}, \mathbf{c}_{i}^{o}, z_{\sigma(i)}) + \mathcal{L}_{\mathrm{act}}(a_{i}, \hat{a}_{\sigma(i)}) \right] \\ \mathcal{L}_{\mathrm{loc}} &= -\log \frac{\exp(\mathrm{sim}(\mathrm{FFN}_{h}(z_{\sigma(i)}), \mu_{c_{i}^{h}})/\tau)}{\sum_{k=1}^{N} \exp(\mathrm{sim}(\mathrm{FFN}_{h}(z_{\sigma(i)}), \mu_{k})/\tau)} \\ &- \log \frac{\exp(\mathrm{sim}(\mathrm{FFN}_{o}(z_{\sigma(i)}), \mu_{c_{i}^{o}}/\tau)}{\sum_{k=1}^{N} \exp(\mathrm{sim}(\mathrm{FFN}_{o}(z_{\sigma(i)}), \mu_{k})/\tau)} \end{aligned}$$

where τ is the temperature that controls the smoothness of the loss function.

Experiment

Dataset: VCOCO

Method	Backbone	$AP_{\rm role}^{\#1}$	$AP_{ m role}^{\#2}$					
Models with external features								
$TIN (RP_DC_D) [18]$	R50	47.8						
Verb Embedding [31]	R50	45.9						
RPNN [33]	R50	-	47.5					
PMFNet [27]	R50-FPN	52.0						
PastaNet [17]	R50-FPN	51.0	57.5					
PD-Net [32]	R50	52.0	-					
ACP [13]	R152	53.0						
FCMNet [20]	R50	53.1	-					
ConsNet [21]	R50-FPN	53.2	-					
Sequential HOI Detectors								
VSRL [8]	R50-FPN	31.8	-					
InteractNet [6]	R50-FPN	40.0	48.0					
BAR-CNN [14]	R50-FPN	43.6	-					
GPNN [24]	R152	44.0	-					
iCAN [5]	R50	45.3	52.4					
TIN (RC _D) [18]	R50	43.2	-					
DCA [29]	R50	47.3	-					
VSGNet [26]	R152	51.8	57.0					
VCL [10]	R50-FPN	48.3						
DRG [4]	R50-FPN	51.0						
IDN [16]	R50	53.3	60.3					
Parallel HOI Detectors								
IPNet [30]	HG104	51.0	-					
UnionDet [12]	R50-FPN	47.5	56.2					
Ours	R50	55.2	64.4					

Table 1. Comparison of performance on V-COCO test set. $AP_{\text{role}}^{\#1}$, $AP_{\text{role}}^{\#2}$ denotes the performance under Scenario1 and Scenario2 in V-COCO, respectively.

Dataset: HICO-DET

				Default		
Method	Detector	Backbone	Feature	Full	Rare	Non Rare
Sequential HOI Dete	ctors					
InteractNet [6]	COCO	R50-FPN	А	9.94	7.16	10.77
GPNN [24]	COCO	R101	А	13.11	9.41	14.23
iCAN [5]	COCO	R50	A+S	14.84	10.45	16.15
DCA [29]	COCO	R50	A+S	16.24	11.16	17.75
TIN [18]	COCO	R50	A+S+P	17.03	13.42	18.11
RPNN [33]	COCO	R50	A+P	17.35	12.78	18.71
PMFNet [27]	COCO	R50-FPN	A+S+P	17.46	15.65	18.00
No-Frills HOI [9]	COCO	R152	A+S+P	17.18	12.17	18.68
DRG [4]	COCO	R50-FPN	A+S+L	19.26	17.74	19.71
VCL [10]	COCO	R50	A+S	19.43	16.55	20.29
VSGNet [26]	COCO	R152	A+S	19.80	16.05	20.91
FCMNet [20]	COCO	R50	A+S+P	20.41	17.34	21.56
ACP [13]	COCO	R152	A+S+P	20.59	15.92	21.98
PD-Net [32]	COCO	R50	A+S+P+L	20.81	15.90	22.28
DJ-RN [15]	COCO	R50	A+S+V	21.34	18.53	22.18
ConsNet [21]	COCO	R50-FPN	A+S+L	22.15	17.12	23.65
PastaNet [17]	COCO	R50	A+S+P+L	22.65	21.17	23.09
IDN [16]	COCO	R50	A+S	23.36	22.47	23.63
Functional Gen. [1]	HICO-DET	R101	A+S+L	21.96	16.43	23.62
TIN [18]	HICO-DET	R50	A+S+P	22.90	14.97	25.26
VCL [10]	HICO-DET	R50	A+S	23.63	17.21	25.55
ConsNet [21]	HICO-DET	R50-FPN	A+S+L	24.39	17.10	26.56
DRG [4]	HICO-DET	R50-FPN	A+S	24.53	19.47	26.04
IDN [16]	HICO-DET	R50	A+S	24.58	20.33	25.86
Parallel HOI Detecto	ors					
UnionDet [12]	COCO	R50-FPN	А	14.25	10.23	15.46
IPNet [30]	COCO	R50-FPN	А	19.56	12.79	21.58
Ours	COCO	R50	А	23.46	16.21	25.62
UnionDet [12]	HICO-DET	R50-FPN	А	17.58	11.72	19.33
PPDM [19]	HICO-DET	HG104	А	21.10	14.46	23.09
Ours	HICO-DET	R50	Α	25.10	17.34	27.42

Table 2. Performance comparison in HICO-DET. The Detector column is denoted as 'COCO' for the models that freeze the object detectors with the weights pre-trained in MS-COCO and 'HICO-DET' if the object detector is fine-tuned with the HICO-DET train set. The each letter in Feature column stands for A: Appearance (Visual features), S: Interaction Patterns (Spatial Correlations [5]), P: Pose Estimation, L: Linguistic Priors, V: Volume [15].

Method	$AP_{\rm role}^{\#1}$	Default(Full)
HOTR	55.2	23.5
w/o HO Pointers	39.3	17.2
w/o Shared Encoders	33.9	14.5
w/o Interactiveness Suppression	52.2	22.0

Table 3. Ablation Study on both V-COCO test set (scenario 1, $AP_{role}^{\#1}$) and HICO-DET test set (Default, Full setting without fine-tuning the object detector)

Thanks