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J Long-Tailed Distribution Sapandl P

What is the long-tailed distribution?

* NLP - Zipf’'s Law
* Economics — Pareto Principle

* Computer Vision
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F Re-balancing(Re-Sampling/Re-Weighting) oot

 Re-Sampling: class-balanced sampling  Drawbacks

— Over-sampling for the tail categories. ‘ — Over-fitting to the tail.
— Under-sampling for the head categories. — Under-fitting to the head.
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F Re-balancing(Re-Sampling/Re-Weighting) oot

* Re-Weighting * Drawbacks
— Weighting by inverse class frequency. — Over-fitting to the tail
— Weighting by inverse square root of class frequency. — Under-fitting to the head
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Loss & Backpropagation
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Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition .CVPR2020
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Figure 2. Top-1 error rates of different manners for representation learning and classifier learning on two long-tailed datasets CIFAR-100-
IR50 and CIFAR-10-IR50 [*]. “CE” (Cross-Entropy), “RW” (Re-Weighting) and “RS” (Re-Sampling) are the conducted learning manners.
As observed, when fixing the representation (comparing error rates of three blocks in the vertical direction), the error rates of classifiers
trained with RW/RS are reasonably lower than CE. While, when fixing the classifier (comparing error rates in the horizontal direction), the
representations trained with CE surprisingly get lower error rates than those with RW/RS. Experimental details can be found in Section 3.
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UNSUPERVISED REPRESENTATION LEARNING BY PREDICTING IMAGE ROTATIONS.ICLR 2018
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Figure 2: Illustration of the self-supervised task that we propose for semantic feature learning.
Given four possible geometric transformations, the 0, 90, 180, and 270 degrees rotations, we train
a ConvNet model F'(.) to recognize the rotation that is applied to the image that it gets as input.
FY(XV") is the probability of rotation transformation y predicted by model F(.) when it gets as
input an image that has been transformed by the rotation transformation y*.
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' Knowledge distillation
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Soft labels are able to capture the inherent relation between classes




Self Supervision to Distillation
for Long-Tailed Visual Recognition
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Figure 2. The pipeline of our Self Supervision to Distillation (SSD) framework. First, we train an initial feature network under label
supervision and self-supervision jointly using instance-balanced sampling. Then, we refine the class decision boundaries with class-
balanced sampling to generate soft labels by fixing the feature backbone. Finally, we train a self-distillation network with two classification
heads under the supervision of both soft labels from previous stages and hard labels from the original training set.




' Phase-I: Feature Learning Al o
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Figure 2. The pipeline of our Self Supervision to Distillation (SSD) framework. First, we train an initial feature network under label
supervision and self-supervision jointly using instance-balanced sampling. Then, we refine the class decision boundaries with class-
balanced sampling to generate soft labels by fixing the feature backbone. Finally, we train a self-distillation network with two classification
heads under the supervision of both soft labels from previous stages and hard labels from the original training set.

The total loss of this stage is illustrated as:

L= alﬁsup(x; 0, wsup) + Oc'zﬁself(xa y;0, wself):
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The total loss of this stage is illustrated as:

L= Oﬁlﬁsup(x; 0, wsup) + 052£self(xa y;0, wself):

I

Lsyyp is Cross-entropy

A4

moco v2(Rotation prediction)

exp(v;v';/T)
exp(viv/'i/T) + D exp(viv/y/T)’

Lserf = — log(

aq1and a, are hyper-parameters and equal to 1
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Joint training with self-distillation loss: £ = A1 L (y, zhmd) + Ao Lra(y, zsoft).
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Soft label:

- exp(z;/T)
> 1 exp(Zk/T)

Z denote the output logits of teacher model

The knowledge distillation loss:

exp(z;°*/T)

>t exp(z;?’f Y/T)

Lra(¥,2°7") TQZyzlog )

Joint training with self-distillation loss: £ = A1 L (y, zhmd) + Ao Lia(y, zsoft).
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' Experiment

Imbalance factor Top-1 Acc.
Methods - = 5 Methods Tx 5%
Cross Entropy (CE)* | 39.1 440 5538 v o :
Focal [7] 384 443 558 LDAM+DRW [*] 68.0 ]
LDAM-DRW [] 420  46.6  58.7 LDAM+DRW? [] 64.6 66.1
LWS* [20] 423 460  58.1 -norm [0] 65.6 69 3
CE-DRW [/7] 415 453 582 cRTH [1] 65.2 68.5
CE-DRS [*7] 416 455  58.1 LWS§ [20] 65.9 69.5
BBN [/7] 426 470  59.1 CE-DRW [/7] 63.7 -
M2m [77] 43.5 - 57.6 CE-DRS [/] 63.6 -
LFME [+1] 43.8 - - BBN [/7] 66.3 69.6
Domain Adaption [ ] 44.1 49.1 58.0 FSA [7] 65.9 -
De-confound [ ] 441 503  59.6 LWSH* ] 66.6 69.5
SSD (ours) 460 505 623 SSD (ours) 69.3 715

CIFAR100-LT iNaturalist 2018
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Ablation studies
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J Ablation studies

Self-supervision guided feature learning:

Methods | 1.5x I I Tl-hard (test)  II-soft (test) IV-LWS | Many Medium Few  Overall
CE 66.9 38.0 8.1 45 1
v 67.9 395 9.5 46.3
61.1 48.0 31.5 50.7
Lws v 63.4 48.6 32.3 2.1
v v 69.8 42.8 11.0
v 64.9 51.1 340 541
v v v 66.0 50.8 34.2 544
QurSSD v v v 71.1 46.1 156 516
v v v v 67.1 52.8 33.3 357
v v v v 66.8 53.1 354 56.0

Table 4. Ablation study on ImageNet-LT. We investigate the effectiveness of each stage of our proposed SSD method. Different stage are
marked by Roman numerals I, II, III. The outputs of hard classifier and soft classifier are termed as III-hard and III-soft. IV-LWS means
an extra classifier fine-tuning stage by LWS after self-distillation.
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Figure 3. Visualization of self-supervision guided feature learning.
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Long-tailed recognition via self-distillation

Methods | 1.5x I I Il-hard (test)  II-soft (tes) IV-LWS | Many Medium Few  Overall

CE 66.9 38.0 8.1 45.1
v 67.9 39.5 9.5 (@6.3)
61.1 48.0 315 507
LWS v 634 486 323 521
v v 69.8 428 1.0  _}89
v v v 64.9 51.1 34.0
ouwssp | ¥ v v 66.0 50.8 342 544
v v v v 71.1 46.1 156 {516
v Y v 67.1 52.8 33.3  55.7)
v v Y v 66.8 53.1 35.4 X

Table 4. Ablation study on ImageNet-LT. We investigate the effectiveness of each stage of our proposed SSD method. Different stage are
marked by Roman numerals I, II, III. The outputs of hard classifier and soft classifier are termed as IlI-hard and III-soft. IV-LWS means
an extra classifier fine-tuning stage by LWS after self-distillation.
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Study on different self-distillation strategies:

Methods Many Medium Few Overall
Plain 67.9 39.5 9.5 46.3
Teacher model 64.9 51.1 34.0 54.1
Coupled 68.6 49.1 23.8 53.2
Single 67.4 52.0 31.3 55.1
Our III-hard 71.1 46.1 15.6 51.6
Our III-soft 67.1 52.8 33.3 55.7

Evaluation on self-supervised task:
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Figure 4. Training top-1 accuracy for supervised and self-
supervised tasks for many-shot, medium-shot, few-shot and over-
all classes on the ImageNet-LT dataset.




Distilling Virtual Examples for Long-tailed
Recognition
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Teacher: CIFAR-100-LT
i * INPUT: Original input images
\ e CE: Cross entropy without specific tips
* BSCE: a long-tailed recognition method
* FULL: using CIFAR-100

1

W
]

—

wn

=
1

average number of (virtual) examples

) Student: CIFAR-100-LT
-- - 39.2%
LB s R Tu L0 43.25%
Methods ° 5 3 7 1%

Figure 1. (Virtual) example distribution of different models.
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Suppose a teacher CNN model predicts t:

exp(z;) exp(zi/T)
: (1) t; = ; 5
>k exp(z) S, exp(zx/7) ©

The student’s loss function is:

ti =

H () to denote the entropy, define:

Lxp = (1 — a)Lce(y, 8) + alki(t, s).  (2) t=(1—a)y+at, (6)
First term: Lep(x,y) :NLKL(x» y) + H(x)
Len(y, s) — Zi‘/k log 51 . 3) H() = — Z P(x;) - logP(x;)
Second term: Lo = (1 — @)Leg(y, 8) + aLg (¢, 8) (7)
T e R v SR
= Lcg(t, s) — aH(t) (10)

= Ly (t,8) + H(t) — aH(t). (11)
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' The virtual example distribution must be flat = -~ R

Binary classification example (airplane vs automobile):

100

s S — 2 N sl Many
" £ \ Medi
9% | 82001 f\ edium
- -+ N FHEH Few
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g % /_/— £ 150- § \
% 95 - E % \
< 94 < §
T e Z1o0] N\ \ S
92 | —— tail g § § § §
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Figure 3. Accuracy (mean value and standard deviation) in a bi- % § § \\\ %
nary classification example. The accuracy becomes higher when 0 / N\ : N / 72
the virtual example ratio between two classes grows (i.e., when the 1 3 6
virtual example distribution becomes flatter). ‘All’ is the union of temperature

‘head’ and ‘tail’.
We prefer distributions that are flat, specifically, whose average

number of examples per category in the tail part is slightly
higher than that in the head part.

the head categories will help recognizing examples
from the tail categories, even if these categories are
not correlated
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Total loss function:

Lpive(y, s®°°F) = (1 — a)Ler(y, 87°9%) + ar® Lk (t7,s7).

t'uses a temperature T and possibly followed by a power normalization (p = 0.5)

£ «— /17, Vi<k<CO, (13)
T
t7 < L V1<i<C. (14)
>k U

stonly uses the temperature T and does not apply the power normalization.
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Table 1. Top-1 accuracy (%) on CIFAR-100-LT. The “{” symbol
denotes results copied directly from [ ©].

Imbalance factor

Methods 100 50 10

CE 38.35 4241 56.51
Focal® [17] 3841 4432 5578
BSCE 42.39 47.60 58.38
LFME [ ] 43.80 - -

LDAM-DRW [ ] 42,04 46.62 58.71
BBN [ ] 4256 47.02 59.12
Meta-learning [ ©] 4470 50.08 59.59
LDAM-DRW+SSP [ 7] | 4343 47.11 58.91
TDE [ 7] 44,10 50.30 59.60
DiVE 45.35 51.13 62.00

CIFAR-100-LT
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Methods Many Medium  Few All Methods tos-ol epof:;_ 5 m?? ep(ﬁ;s_ 5
CE 65.02 37.07 8.07 43.89 CE 62.60 83.44 _ _
BSCE 6092 4797 2979 5048 CB-Focal' [7] 61.12 81.03 - -
OLTR' [1] - - - 46.30 BSCE 6535 83.36 67.84 85.45
r-norm [/ 7] | 59.10 4690  30.70 49.40 LDAM-DRW' ['] | 68.00 85.18 - :
LWS [17] 60.20 4720  30.30 49.90 EBN I . gggg ggﬁ 69.65 87.64
TDE 2. 48. 1. 1. eta-learning ) ) - .
mEL @ sk e s L B

; : : : : cRT+SSP 7] 68.10 - - -
DiVE 64.06 5041 3146 53.10 DiVE 69.13 86.85 7171 88.39

ImageNet-LT iNaturalist2018
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Many Medium EEE] Few

Table 6. Effects of balancing the virtual example distribution. g 250 .

BSCE #t" 7 power| 100 50 10 z . B

CE - - - - 3835 4241 5651 g 200 \ N N

#1 v/t 3 v/ |4535 5113 62.00 E \ N N

#2 X 1/ |4455 4969 61.62 210 \ N N
#3 X t7 3/ |4450 5020 61.28 Pl SBEN REN N N
#4 Xt 1 X |4325 4764 6007 e NN M N N K
#5 X t 1 X |4159 4710 59.10 ool NN, NH N, N N
#6 X t 3 / |4322 4851 6059 N & h@ S i \ N
= JNH NE NEH NA N@ D

1

2 3 4 5 6
Method id
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