

SOTA of Two Technical Routes in Model Calibration:

Gaussian Process Calibration & I-Max Binning

Calibration Methods

Binary

Histogram Binning

Given fixed bins boundaries, the solution results in θ_m that correspond to the average number of positive-class samples in bin B_m

Isotonic Regression

-- a strict version of histogram binning where boundaries

and predictions are jointly optimized

Bayesian Binning into Quantiles (BBQ)

-- BBQ marginalizes out all possible binning schemes

Settings:

A binning scheme s is a pair (M, \mathcal{I}) where M is the number of bins, and \mathcal{I} is a corresponding partitioning of [0, 1] into disjoint intervals $(0 = a_1 \le a_2 \le ... \le a_{M+1} = 1)$. The parameters of a binning scheme are $\theta_1, ..., \theta_M$.

BBQ considers a space S of all possible binning schemes for the validation dataset D.

Bayesian Binning into Quantiles (BBQ)

$$\mathbb{P}(\hat{q}_{te} \mid \hat{p}_{te}, D) = \sum_{s \in S} \mathbb{P}(\hat{q}_{te}, S = s \mid \hat{p}_{te}, D)$$

$$= \sum_{s \in S} \mathbb{P}(\hat{q}_{te} \mid \hat{p}_{te}, S = s, D) \mathbb{P}(S = s \mid D)$$
calibrated probability
using binning scheme s
$$\mathbb{P}(S = s \mid D) = \frac{\mathbb{P}(D \mid S = s)}{\sum_{s' \in S} \mathbb{P}(D \mid S = s')}$$

The parameters $\theta_1, ..., \theta_M$ can be viewed as parameters of M independent binomial distributions. Hence, by placing a Beta prior on $\theta_1, ..., \theta_M$, we can obtain a closed form expression for the marginal likelihood $\mathbb{P}(D \mid S = s)$. This allows us to compute $\mathbb{P}(\hat{q}_{te} \mid \hat{p}_{te}, D)$ for any test input.

Platt Scaling

 $\hat{q}_i = \sigma(\underline{a}z_i + \underline{b})$ optimized using the NLL loss over the validation set

 $\mu_{beta}(s;a,b,c) = \frac{1+1}{1+1} \left(\frac{e^{c} \frac{s^{a}}{(1-s)^{b}}}{1-s} \right)$

Multi-Class

Extension of Binning Methods (One vs Rest)

We have K classes.

For each class k, we form a binary calibration problem where the label is $\mathbb{I}(y_i = k)$ and the predicted probability is $\sigma_{SM}(z_i)^{(k)}$.

For each instance *i*, we have an unnormalized probability vector [$\hat{q}_{i}^{(1)}, \hat{q}_{i}^{(2)}, ..., \hat{q}_{i}^{(K)}$].

Then normalize them.

a and *b* are optimized using the NLL loss over the validation set

W and b are optimized using the NLL loss over the validation set

Temperature Scaling

An Interesting Visualization Method

LeNet on CIFAR-10

Non-Parametric Calibration for Classification

Jonathan Wenger Hedvig Kjellström Rudolph Triebel

AISTATS 2020

Gaussian Process

Definition Assume a one-dimensional Gaussian process prior over the latent function $g : \mathbb{R} \to \mathbb{R}$, i.e.

 $g \sim \mathcal{GP}(\mu(\cdot), k(\cdot, \cdot \mid \boldsymbol{\theta}))$

with mean function μ , kernel k and kernel parameters $\boldsymbol{\theta}$

南京航空航天大学 Nanjing University of Aeronautics and Astronautics

model output:

$$v(\mathbf{z})_k = \sigma(g(\mathbf{z}_1), \dots, g(\mathbf{z}_K))_k = \frac{\exp(g(\mathbf{z}_k))}{\sum_{j=1}^K \exp(g(\mathbf{z}_j))}$$

categorical likelihood:

$$\operatorname{Cat}(\mathbf{y} \mid v(\mathbf{z})) = \prod_{k=1}^{K} \sigma(g(\mathbf{z}_1), \dots, g(\mathbf{z}_K))_k^{[\mathbf{y}=k]}$$

The joint distribution of the data $(\mathbf{z}_n, \mathbf{y}_n)$ and latent variables \mathbf{g} :

$$p(\mathbf{y}, \mathbf{g}) = p(\mathbf{y} \mid \mathbf{g}) p(\mathbf{g}) = \prod_{n=1}^{N} p(\mathbf{y}_n \mid \mathbf{g}_n) p(\mathbf{g}) = \prod_{n=1}^{N} \operatorname{Cat}(\mathbf{y}_n \mid \sigma(\mathbf{g}_n)) \mathcal{N}(\mathbf{g} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}_{\mathbf{g}})$$

where $\mathbf{y} \in \{1, \dots, K\}^N$, $\mathbf{g} = (\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_N)^\top \in \mathbb{R}^{NK}$
and $\mathbf{g}_n = (g(\mathbf{z}_{n1}), \dots, g(\mathbf{z}_{nK}))^\top \in \mathbb{R}^K$

In order to reduce the computational complexity $\mathcal{O}((NK)^3)$, we define M inducing inputs $\mathbf{w} \in \mathbb{R}^M$ and inducing variables $\mathbf{u} \in \mathbb{R}^M$.

$$p(\mathbf{g}, \mathbf{u}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{g}\\\mathbf{u}\end{bmatrix} \middle| \begin{bmatrix}\boldsymbol{\mu}_{\mathbf{g}}\\\boldsymbol{\mu}_{\mathbf{u}}\end{bmatrix}, \begin{bmatrix}\boldsymbol{\Sigma}_{\mathbf{g}} & \boldsymbol{\Sigma}_{\mathbf{g}, \mathbf{u}}\\\boldsymbol{\Sigma}_{\mathbf{g}, \mathbf{u}}^{\top} & \boldsymbol{\Sigma}_{\mathbf{u}}\end{bmatrix}\right)$$

 $q(\mathbf{u}) = \mathcal{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})$: a variational approximation to the posterior $p(\mathbf{u} \mid \mathbf{y})$

$$p(\mathbf{g}, \mathbf{u} \mid \mathbf{y}) = p(\mathbf{g} \mid \mathbf{u}) p(\mathbf{u} \mid \mathbf{y})$$

 $\ln p(\mathbf{y}) \geq \text{ELBO}(q(\mathbf{u}))$ $= \mathbb{E}_{q(\mathbf{u})} \left[\ln p(\mathbf{y} \mid \mathbf{u}) \right] - \text{KL} \left[q(\mathbf{u}) \| p(\mathbf{u}) \right]$ $\geq \mathbb{E}_{q(\mathbf{u})} \left[\mathbb{E}_{p(\mathbf{g} \mid \mathbf{u})} \left[\ln p(\mathbf{y} \mid \mathbf{g}) \right] \right]$ $- \text{KL} \left[q(\mathbf{u}) \| p(\mathbf{u}) \right]$ $= \mathbb{E}_{q(\mathbf{g})} \left[\ln p(\mathbf{y} \mid \mathbf{g}) \right] - \text{KL} \left[q(\mathbf{u}) \| p(\mathbf{u}) \right]$

Let
$$q(\mathbf{u}) = \mathcal{N}(\mathbf{u} \mid \boldsymbol{m}, \boldsymbol{S})$$
 and $\boldsymbol{A} \coloneqq \boldsymbol{\Sigma}_{\mathbf{g}, \mathbf{u}} \boldsymbol{\Sigma}_{\mathbf{u}}^{-1}$, then

$$egin{aligned} q(\mathbf{g}) \coloneqq & \int \underbrace{p(\mathbf{g} \mid \mathbf{u})q(\mathbf{u})}_{q(\mathbf{g},\mathbf{u})} d\mathbf{u} \ & = \mathcal{N}(\mathbf{g} \mid oldsymbol{\mu}_{\mathbf{g}} + oldsymbol{A}(oldsymbol{m} - oldsymbol{\mu}_{u}), \ oldsymbol{\Sigma}_{\mathbf{g}} + oldsymbol{A}(oldsymbol{S} - oldsymbol{\Sigma}_{\mathbf{u}})oldsymbol{A}^{ op}) \end{aligned}$$

 $q(\boldsymbol{g}) := \int p(\boldsymbol{g}|\boldsymbol{u})q(\boldsymbol{u})d\boldsymbol{u} \text{ is Gaussian,}$ its K-dimensional marginals $q(\boldsymbol{g}_n) = \mathcal{N}(\boldsymbol{g}_n|\boldsymbol{\varphi}_n, \boldsymbol{C}_n)$

$$\ln p(\mathbf{y}) \geq \text{ELBO}(q(\mathbf{u})) \qquad (\text{Considering KL}(q(\boldsymbol{u})||p(\boldsymbol{u}|\boldsymbol{y})))$$

$$= \mathbb{E}_{q(\mathbf{u})} [\ln p(\mathbf{y} | \mathbf{u})] - \text{KL} [q(\mathbf{u})||p(\mathbf{u})]$$

$$\geq \mathbb{E}_{q(\mathbf{u})} [\mathbb{E}_{p(\mathbf{g}|\mathbf{u})} [\ln p(\mathbf{y} | \mathbf{g})]] - \text{KL} [q(\mathbf{u})||p(\mathbf{u})]$$

$$= \mathbb{E}_{q(\mathbf{g})} [\ln p(\mathbf{y} | \mathbf{g})] - \text{KL} [q(\mathbf{u})||p(\mathbf{u})]$$

$$= \sum_{n=1}^{N} \mathbb{E}_{q(\mathbf{g}_n)} [\ln p(\mathbf{y}_n | \mathbf{g}_p)] - \text{KL} [q(\mathbf{u})||p(\mathbf{u})]$$

$$\mathbb{E}_{q(\mathbf{g}_n)} [\ln p(\mathbf{y}_n | \mathbf{g}_n)] \approx \ln p(\mathbf{y}_n | \phi_n) + \frac{1}{2} (\sigma(\phi_n)^\top C_n \sigma(\phi_n) - \text{diag}(C_n)^\top \sigma(\phi_n))$$

$$p(\mathbf{g}, \mathbf{u} \mid \mathbf{y}) \approx p(\mathbf{g} \mid \mathbf{u})q(\mathbf{u})$$
$$p(\mathbf{g}_* \mid \mathbf{y}) = \int p(\mathbf{g}_* \mid \mathbf{g}, \mathbf{u})p(\mathbf{g}, \mathbf{u} \mid \mathbf{y}) d\mathbf{g} d\mathbf{u}$$
$$\approx \int p(\mathbf{g}_* \mid \mathbf{u})q(\mathbf{u}) d\mathbf{u}$$

Method	Optim. obj.	Calibration
Temp. scal.	$\mathcal{O}(NK)$	$\mathcal{O}(K)$
GPcalib		
diag. cov.	$\mathcal{O}(NK + M^3)$	$\mathcal{O}(K(M^2+Q))$
full cov.	$\mathcal{O}(NK^2 + M^3)$	$\mathcal{O}(K^2(M^2+Q))$
mean appr.	$\mathcal{O}(NK^a + M^3)$	$\mathcal{O}(K^a M^2)$

Experiments

				one-vs				
Data Set	Model	Uncal.	Platt	Isotonic	Beta	BBQ	Temp.	GPcalib
MNIST	AdaBoost	.6121	.2267	.1319	.2222	.1384	.1567	.0414
MNIST	XGBoost	.0740	.0449	.0176	.0184	.0207	.0222	.0180
MNIST	Mondrian Forest	.2163	.0357	.0282	.0383	.0762	.0208	.0213
MNIST	Random Forest	.1178	.0273	.0207	.0259	.1233	.0121	.0148
MNIST	1 layer NN	.0262	.0126	.0140	.0168	.0186	.0195	.0239
CIFAR-100	AlexNet	.2751	.0720	.1232	.0784	.0478	.0365	.0369
CIFAR-100	WideResNet	.0664	.0838	.0661	.0539	.0384	.0444	.0283
CIFAR-100	ResNeXt-29 (8x64)	.0495	.0882	.0599	.0492	.0392	.0424	.0251
CIFAR-100	ResNeXt-29 (16x64)	.0527	.0900	.0620	.0520	.0365	.0465	.0266
CIFAR-100	DenseNet-BC-190	.0717	.0801	.0665	.0543	.0376	.0377	.0237
ImageNet	AlexNet	.0353	.1132	.2937	.2290	.1307	.0342	.0357
ImageNet	VGG19	.0377	.0965	.2810	.2416	.1617	.0342	.0364
ImageNet	ResNet-50	.0441	.0875	.2724	.2250	.1635	.0341	.0335
ImageNet	ResNet-152	.0545	.0879	.2761	.2201	.1675	.0323	.0283
ImageNet	DenseNet-121	.0380	.0949	.2682	.2297	.1512	.0329	.0357
ImageNet	DenseNet-201	.0410	.0898	.2706	.2189	.1614	.0324	.0367
ImageNet	InceptionV4	.0318	.0865	.2900	.1653	.1593	.0462	.0269
ImageNet	SE-ResNeXt-50	.0440	.0889	.2684	.1789	.1990	.0482	.0279
ImageNet	SE-ResNeXt-101	.0574	.0853	.2844	.1631	.1496	.0415	.0250
ImageNet	PolyNet	.0823	.0806	.2590	.2006	.1787	.0369	.0283
ImageNet	SENet-154	.0612	.0809	.3003	.1582	.1502	.0497	.0309
ImageNet	PNASNet-5-Large	.0702	.0796	.3063	.1430	.1355	.0486	.0270
ImageNet	NASNet-A-Large	.0530	.0826	.3265	.1437	.1268	.0516	.0255

The plot shows latent functions of temperature scaling and GPcalib from a single CV run of our experiments on ImageNet. For PolyNet and PNASNet GPcalib shows a significant decrease in ECE1 in Table 1, corresponding to a higher degree of non-linearity in the latent GP.

Multi-Class Uncertainty Calibration via

Mutual Information Maximization-based Binning

Kanil Patel^{1,2}, William Beluch¹, Bin Yang², Michael Pfeiffer¹, Dan Zhang¹ ¹ Bosch Center for Artificial Intelligence, Renningen, Germany ² Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany

ICLR 2021 Poster

HB's Advantage

(a) Top-1 prediction ECE (5k evaluation samples)

(b) ECE converging curve (based on 10^2 bootstraps)

Figure 1: (a) Temperature scaling (TS), equally sized-histogram binning (HB), and our proposal, i.e., sCW I-Max binning are compared for post-hoc calibrating a CIFAR100 (WRN) classifier. (b) Binning offers a reliable ECE measure as the number of evaluation samples increases.

HB's ECE estimate is constant and unaffected by the number of evaluation bins.

Problem Setup

input: $x \in \mathcal{X}$ belongs to one of K classes ground truth lables: $\mathbf{y} = [y_1, y_2, \dots, y_K] \in \{0, 1\}^K$ Let $f: \mathcal{X} \mapsto [0,1]^K$, output: $\mathbf{q} = [q_1, \dots, q_K] \in [0, 1]^K$ class-wise ECE: $_{cw}ECE(h \circ f) = \frac{1}{K} \sum_{k=1}^{K} E_{\mathbf{q}=f(\mathbf{x})} \left\{ \left| p(y_k = 1 | h(\mathbf{q})) - h_k(\mathbf{q}) \right| \right\}$ top-1 ECE: $E\left[\left|p(y_{k=\arg\max_{k}h_{k}(\mathbf{q})}=1|h(\mathbf{q}))-\max_{k}h_{k}(\mathbf{q})\right|\right]$

make q unbounded: $\lambda_k \stackrel{\Delta}{=} \log q_k - \log(1 - q_k)$

quantizer Q: $\lambda \in \mathbb{R} \to m \in \{1, ..., M\}$ if $\lambda \in \mathcal{I}_m = [g_{m-1}, g_m)$, where M is the total number of bin intervals, $g_{m-1} < g_m, g_0 = -\infty, g_M = \infty$. Any logit binned to \mathcal{I}_m will be reproduced to the same bin representative r_m .

Figure A1: Histogram of ImageNet (InceptionResNetv2) logits for (a) CW and (b) sCW training. By means of the set merging strategy to handle the two-class imbalance 1:999, S has K=1000 times more class-1 samples than S_k with the same 10k calibration samples from C.

shared class-wise(sCW) vs CW

Figure A2: Empirical approximation error of S vs. S_k , where Jensen-Shannon divergence (JSD) is used to measure the difference between the empirical distributions underlying the training sets for class-wise bin optimization. Overall, the merged set S is a more sample efficient choice over S_k .

We propose bin optimization via maximizing the MI between the quantized logits $Q(\lambda)$ and and the label y:

$$g_m^* \} = \arg \max_{Q: \{g_m\}} I(y; m = Q(\lambda)) \stackrel{(a)}{=} \arg \max_{Q: \{g_m\}} H(m) - H(m|y)$$
$$P(m) = \int_{g_{m-1}}^{g_m} p(\lambda) d\lambda \qquad P(m|y) = \int_{g_{m-1}}^{g_m} p(\lambda|y) d\lambda$$

Mutual Information(MI) Maximization

Theorem 1. The MI maximization problem given in (2) is equivalent to

$$\max_{Q:\{g_m\}} I(y; m = Q(\lambda)) \equiv \min_{\{g_m, \phi_m\}} \mathcal{L}(\{g_m, \phi_m\})$$

where the loss $\mathcal{L}(\{g_m, \phi_m\})$ is defined as

$$\mathcal{L}(\{g_m, \phi_m\}) \stackrel{\Delta}{=} \sum_{m=0}^{M-1} \int_{g_m}^{g_{m+1}} p(\lambda) \sum_{y' \in \{0,1\}} P(y = y'|\lambda) \log \frac{P(y = y')}{\sigma \left[(2y' - 1)\phi_m\right]} d\lambda$$
$$I(y; Q(\lambda)) + \mathcal{L}(\{g_m, \phi_m\}) = \sum_{i=0}^{M-1} \int_{g_m}^{g_{m+1}} p(\lambda) \sum_{y' \in \{0,1\}} P(y = y'|\lambda) d\lambda \log \frac{P(y = y'|m)}{P_{\sigma}(y = y'; \phi_m)}$$
$$\stackrel{(a)}{=} \sum_{i=0}^{M-1} P(m) \left[\sum_{y' \in \{0,1\}} P(y = y'|m) \log \frac{P(y = y'|m)}{P_{\sigma}(y = y'; \phi_m)} \right]$$
$$\stackrel{(b)}{=} \sum_{i=0}^{M-1} P(m) \text{KLD} \left[P(y = y'|m) \| P_{\sigma}(y = y'; \phi_m) \right] \ge \mathbf{0}$$

$$g_m = \log\left\{ \frac{\log\left[\frac{1+e^{\phi_m}}{1+e^{\phi_{m-1}}}\right]}{\log\left[\frac{1+e^{-\phi_{m-1}}}{1+e^{-\phi_m}}\right]} \right\}, \ \phi_m = \log\left\{ \frac{\int_{g_m}^{g_{m+1}} \sigma(\lambda) p(\lambda) \mathrm{d}\lambda}{\int_{g_m}^{g_{m+1}} \sigma(-\lambda) p(\lambda) \mathrm{d}\lambda} \right\} \approx \log\left\{ \frac{\sum_{\lambda_n \in \mathcal{S}_m} \sigma(\lambda_n)}{\sum_{\lambda_n \in \mathcal{S}_m} \sigma(-\lambda_n)} \right\}$$

Algorithm 1: I-Max Binning Calibration

Input: Number of bins M, logits $\{\lambda_n\}_1^N$ and binary labels $\{y_n\}_1^N$ **Result:** bin edges $\{g_m\}_0^M$ ($g_0 = -\infty$ and $g_M = \infty$) and bin representations $\{\phi_m\}_0^{M-1}$ Initialization: $\{\phi_m\} \leftarrow \text{Kmeans} + (\{\lambda_n\}_1^N, M)$ (see A3.4); for *iteration* = 1, 2, ..., 200 do for m = 1, 2, ..., M - 1 do $g_m \leftarrow \log \left\{ \frac{\log \left[\frac{1+e^{\phi_m}}{1+e^{\phi_m-1}}\right]}{\log \left[\frac{1+e^{-\phi_m-1}}{1+e^{-\phi_m-1}}\right]} \right\};$ end for $m = 0, 2, \ldots, M - 1$ do $\mathcal{S}_{m} \stackrel{\Delta}{=} \{\lambda_{n}\} \cap [g_{m}, g_{m+1}); \\ \phi_{m} \leftarrow \log\left\{\frac{\sum_{\lambda_{n} \in \mathcal{S}_{m}} \sigma(\lambda_{n})}{\sum_{\lambda_{n} \in \mathcal{S}_{m}} \sigma(-\lambda_{n})}\right\};$ end end

Figure 2: Histogram and KDE of CIFAR100 (WRN) logits in S constructed from 1k calibration samples. The bin edges of Eq. mass binning are located at the high mass region, mainly covering class-0 due to the imbalanced two class ratio 1:99. Both Eq. size and I-Max binning cover the high uncertainty region, but here only I-Max yields reasonable bin widths ensuring enough mass per bin. Note, Eq. size binning uniformly partitions the interval [0, 1] in the probability domain. The observed dense and symmetric bin location around zero is the outcome of probability-to-logit translation.

Compare with classic HB methods

(a) Convergence behavior

(b) Label-information vs. compression rate

Table A7: Tab. 1 Extension: ImageNet - ResNet152

Binn.	sCW(?)	size	Acc _{top1} ↑	Acc _{top5} \uparrow	$_{\mathrm{CW}}\mathrm{ECE}_{rac{1}{K}}\downarrow$	$_{top1}ECE\downarrow$	NLL
Baseline	×	-	$78.33 \pm 0.$	17 94.00 \pm 0.14	0.0500 ± 0.0004	0.0512 ± 0.0018	0.8760 ± 0.0133
Eq. Mass	×	25k	$17.45 \pm 0.$	$10\ 44.87 \pm 0.37$	0.0017 ± 0.0000	0.1555 ± 0.0010	2.9526 ± 0.0168
Eq. Mass	1	1k	16.25 ± 0.12	54 45.53 \pm 0.81	0.0064 ± 0.0004	0.1476 ± 0.0054	2.9471 ± 0.0556
Eq. Size	×	25k	75.50 ± 0.2	$28 \ 88.85 \pm 0.19$	0.1223 ± 0.0008	0.0604 ± 0.0017	1.6012 ± 0.0252
Eq. Size	1	1k	$78.24\pm0.$	$16 \ 88.81 \pm 0.19$	0.1480 ± 0.0015	0.0286 ± 0.0053	1.3308 ± 0.0178
I-Max	×	25k	$78.24 \pm 0.$	$16\ 93.91\pm0.17$	0.0334 ± 0.0005	0.0521 ± 0.0015	0.8842 ± 0.0135
I-Max	1	1k	78.19 ± 0.2	$21 \ 93.82 \pm 0.17$	$\textbf{0.0295} \pm 0.0030$	$\textbf{0.0196} \pm 0.0049$	$\textbf{0.8638} \pm 0.0135$

ImageNet - InceptionResnetV2

Calibrator	Acc_{top1} \uparrow	Acc_{top5} \uparrow	$_{\mathrm{CW}}\mathrm{ECE}_{\frac{1}{K}}\downarrow$	$_{top1}ECE\downarrow$	NLL	Brier		
Baseline	80.33 ± 0.15	95.10 ± 0.15	0.0486 ± 0.0003	0.0357 ± 0.0009	0.8406 ± 0.0095	0.1115 ± 0.0007		
	25k Calibration Samples							
BBQ (Naeini et al., 2015)	53.89 ± 0.30	88.63 ± 0.22	0.0287 ± 0.0009	0.2689 ± 0.0033	1.7104 ± 0.0370	0.3273 ± 0.0016		
Beta Kull et al. (2017)	80.47 ± 0.14	94.84 ± 0.15	0.0706 ± 0.0003	0.0346 ± 0.0022	0.9038 ± 0.0270	0.1174 ± 0.0010		
Isotonic Reg. Zadrozny & Elkan (2002)	80.08 ± 0.19	93.46 ± 0.20	0.0644 ± 0.0014	0.0468 ± 0.0020	1.8375 ± 0.0587	0.1203 ± 0.0012		
Platt Platt (1999)	80.48 ± 0.14	95.18 ± 0.12	0.0597 ± 0.0007	0.0775 ± 0.0015	0.8083 ± 0.0106	0.1205 ± 0.0010		
Vec Scal. Kull et al. (2019)	80.53 ± 0.19	95.18 ± 0.16	0.0494 ± 0.0002	0.0300 ± 0.0010	0.8269 ± 0.0097	0.1106 ± 0.0007		
Mtx Scal. Kull et al. (2019)	80.78 ± 0.18	95.38 ± 0.15	0.0508 ± 0.0003	0.0282 ± 0.0014	0.8042 ± 0.0100	0.1090 ± 0.0006		
BWS Ji et al. (2019)	80.33 ± 0.16	95.10 ± 0.16	0.0561 ± 0.0008	0.044 ± 0.0019	0.8273 ± 0.0105	0.1129 ± 0.0009		
ETS-MnM Zhang et al. (2020)	80.33 ± 0.16	95.10 ± 0.16	0.0479 ± 0.0004	0.0358 ± 0.0009	0.8426 ± 0.0097	0.1115 ± 0.0008		
			1k Calil	oration Samples				
TS Guo et al. (2017)	80.33 ± 0.16	95.10 ± 0.16	0.0559 ± 0.0015	0.0439 ± 0.0022	0.8293 ± 0.0107	0.1134 ± 0.0010		
GP Wenger et al. (2020)	80.33 ± 0.15	95.11 ± 0.15	0.0485 ± 0.0035	0.0186 ± 0.0034	0.7556 ± 0.0118	0.1069 ± 0.0007		
Eq. Mass	5.02 ± 0.13	26.75 ± 0.37	0.0022 ± 0.0001	0.0353 ± 0.0012	3.5272 ± 0.0142	0.0489 ± 0.0012		
Eq. Size	80.14 ± 0.23	88.99 ± 0.12	0.1525 ± 0.0023	0.0279 ± 0.0043	1.2671 ± 0.0130	0.1115 ± 0.0011		
I-Max	80.20 ± 0.18	94.86 ± 0.17	0.0302 ± 0.0041	0.0200 ± 0.0033	0.7860 ± 0.0208	0.1116 ± 0.0008		
Eq. Mass w. TS	5.02 ± 0.13	26.87 ± 0.43	0.0023 ± 0.0001	0.0357 ± 0.0012	3.5454 ± 0.0222	0.0490 ± 0.0012		
Eq. Mass w. GP	5.02 ± 0.13	26.87 ± 0.43	0.0022 ± 0.0001	0.0353 ± 0.0012	3.4778 ± 0.0217	0.0489 ± 0.0012		
Eq. Size w. TS	80.26 ± 0.18	88.99 ± 0.12	0.1470 ± 0.0007	0.0391 ± 0.0038	1.2721 ± 0.0116	0.1136 ± 0.0012		
Eq. Size w. GP	80.26 ± 0.18	88.99 ± 0.12	0.1508 ± 0.0021	0.0140 ± 0.0056	1.2661 ± 0.0121	0.1105 ± 0.0008		
I-Max w. TS	80.20 ± 0.18	94.87 ± 0.19	0.0354 ± 0.0124	0.0402 ± 0.0019	0.8339 ± 0.0108	0.1142 ± 0.0009		
I-Max w. GP	80.20 ± 0.18	94.87 ± 0.19	0.0300 ± 0.0041	0.0121 ± 0.0048	0.7787 ± 0.0102	0.1111 ± 0.0006		

Model Calibration + Active Learning?

Experiments

Mondrian Forests trained online on labels obtained via an entropy query strategy on the KITTI dataset.

The calibrated forest queries about 10% less labels, while reaching comparable accuracy.

Thanks for Listening