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SOTA of Two Technical Routes in Model Calibration:

Gaussian Process Calibration & I-Max Binning
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Binary
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Histogram Binning

B1 B2 B3 B4 B5

a2 a3 a4 a5a1=0 1=a1

θ1 θ2 θ3 θ4 θ5

Given fixed bins boundaries, the solution results in θm that 
correspond to the average number of positive-class samples in bin Bm



5

Isotonic Regression

-- a strict version of histogram binning where boundaries 
and predictions are jointly optimized
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Bayesian Binning into Quantiles (BBQ)

-- BBQ marginalizes out all possible binning schemes

Settings: 

A binning scheme s is a pair (𝑀, ℐ) where 𝑀 is the number of bins, and ℐ
is a corresponding partitioning of [0, 1] into disjoint intervals (0 = 𝑎1 ≤ 𝑎2 ≤
. . . ≤ 𝑎𝑀+1 = 1). The parameters of a binning scheme are 𝜃1, ..., 𝜃𝑀.

BBQ considers a space 𝒮 of all possible binning schemes for the validation 
dataset 𝐷.
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Bayesian Binning into Quantiles (BBQ)

calibrated probability
using binning scheme s

The parameters 𝜃1, ..., 𝜃𝑀 can be viewed as parameters of M independent 
binomial distributions. Hence, by placing a Beta prior on 𝜃1, ..., 𝜃𝑀, we can 
obtain a closed form expression for the marginal likelihood ℙ(𝐷 | 𝑆 = s). This
allows us to compute ℙ( | , 𝐷) for any test input.teq̂ tep̂
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Platt Scaling

𝒛𝒊

optimized using the NLL loss 
over the validation set
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Beta Calibration
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Multi-Class
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Extension of Binning Methods (One vs Rest)

𝑧1 𝑧2 𝑧𝐾...

We have 𝐾 classes.

For each class 𝑘, we form a binary calibration 
problem where the label is 𝕝(𝑦𝑖 = 𝑘) and the 

predicted probability is σ𝑆𝑀(𝑧𝑖)
(𝑘).

For each instance 𝑖, we have an unnormalized 
probability vector [                              ].

Then normalize them.
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Matrix and Vector Scaling

𝑊 and 𝑏 are optimized using 
the NLL loss over the validation 
set

𝑎 and 𝑏 are optimized using the 
NLL loss over the validation set
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Temperature Scaling
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An Interesting Visualization Method
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An Interesting Visualization Method

LeNet on CIFAR-10
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Non-Parametric Calibration for Classification

Jonathan Wenger Hedvig Kjellström Rudolph Triebel

AISTATS 2020
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Gaussian Process

𝜽
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The Joint Distribution of the data & latent variables

model output: 

categorical likelihood:

The joint distribution of the data (𝒛𝑛, 𝑦𝑛) and latent variables 𝒈:

where
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Using Variational Inference

In order to reduce the computational complexity 𝒪((𝑁𝐾)3), we define 𝑀
inducing inputs 𝐰 ∈ ℝ𝑀 and inducing variables 𝐮 ∈ ℝ𝑀.

𝑞(𝐮) = 𝒩 (𝐮 | 𝒎, 𝑺): a variational approximation to the posterior 𝑝(𝐮 | 𝒚)

𝑝(𝐠, 𝐮 | 𝐲) = 𝑝(𝐠 | 𝐮) 𝑝(𝐮|𝐲)
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Using Variational Inference

(Considering KL(𝑞(𝒖)||𝑝(𝒖|𝒚)))

𝑞(𝒈) ∶= ∫ 𝑝(𝒈|𝒖)𝑞(𝒖)𝑑𝒖 is Gaussian, 
its K-dimensional marginals 
𝑞(𝒈𝑛) = 𝒩(𝒈𝑛|𝝋𝑛, 𝑪𝑛)
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Using Variational Inference

(Considering KL(𝑞(𝒖)||𝑝(𝒖|𝒚)))
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GP Calibration
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Computational Complexity
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Experiments
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Experiments

The plot shows latent functions of temperature scaling and GPcalib from a 
single CV run of our experiments on ImageNet. For PolyNet and PNASNet 
GPcalib shows a significant decrease in ECE1 in Table 1, corresponding to a 
higher degree of non-linearity in the latent GP.
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Multi-Class Uncertainty Calibration via 

Mutual Information Maximization-based Binning

Kanil Patel1,2, William Beluch1, Bin Yang2, Michael Pfeiffer1, Dan Zhang1

1 Bosch Center for Artificial Intelligence, Renningen, Germany
2 Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany

ICLR 2021 Poster
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HB’s Advantage

HB’s  ECE estimate is constant and unaffected by the number of evaluation bins.



input: 𝓍 ∈ 𝒳 belongs to one of 𝐾 classes
ground truth lables:
Let ,
output:

class-wise ECE:

top-1 ECE:

make 𝑞 unbounded:

quantizer Q: λ ∈ ℝ → 𝑚 ∈ {1, . . . , 𝑀} if λ ∈ ℐ𝑚 = [𝑔𝑚−1, 𝑔𝑚), 
where 𝑀 is the total number of bin intervals, 𝑔𝑚−1 < 𝑔𝑚, 𝑔0 = −∞, 𝑔𝑀 = ∞. 
Any logit binned to ℐ𝑚 will be reproduced to the same bin representative 𝑟𝑚.  
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Problem Setup



29

shared class-wise(sCW) vs CW
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shared class-wise(sCW) vs CW
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Mutual Information(MI) Maximization

We propose bin optimization via maximizing the MI between the quantized 
logits 𝑄(𝜆) and and the label 𝑦:
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Mutual Information(MI) Maximization

≥ 0
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I-Max Binning
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Compare with classic HB methods
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Compare with classic HB methods

Information Bottleneck limit
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Experiments
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Experiments

ImageNet - InceptionResnetV2
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Model Calibration + Active Learning?
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Experiments

Mondrian Forests trained online 
on labels obtained via an entropy 
query strategy on the KITTI 
dataset.

The calibrated forest queries
about 10% less labels, while 
reaching comparable accuracy.
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